Trong cây cối có chất phóng xạ . Khảo sát một mẫu gỗ cổ, các nhà khoa học đo được độ phóng xạ của nó bằng 86% độ phóng xạ của mẫu gỗ tươi cùng loại. Xác định độ tuổi của mẫu gỗ cổ đó. Biết chu kì bán rã của là T = 5 739 năm, độ phóng xạ của chất phóng xạ tại thời điểm t được cho bởi công thức H = H0e–λt với H0 là độ phóng xạ ban đầu (tại thời điểm t = 0); là hằng số phóng xạ (Nguồn: Vật lí 12, NXBGD Việt Nam, 2021).
Do độ phóng xạ của bằng 86% độ phóng xạ của mẫu gỗ tươi cùng loại nên ta có:
H = 86%H0
⇔ H0e–λt = 0,86H0
⇔ e–λt = 0,86
⇔ –λt = ln0,86
Mà hằng số phóng xạ là:
Do đó (năm)
Vậy độ tuổi của mẫu gỗ cổ đó là khoảng 1 247 năm.
Tập xác định của hàm số y = log0,5(2x – x2) là:
A. (–∞; 0) ∪ (2; +∞).
B. ℝ \{0; 2}.
C. [0; 2].
D. (0; 2).
Tập nghiệm của bất phương trình là:
A. (–∞; 16).
B. (16; +∞).
C. (0; 16).
D. (–∞; 0).
Trong một trận động đất, năng lượng giải tỏa E (đơn vị: Jun, kí hiệu J) tại tâm địa chấn ở M độ Richter được xác định xấp xỉ bởi công thức: logE ≈ 11,4 + 1,5M.
(Nguồn: Giải tích 12 Nâng cao, NXBGD Việt Nam, 2021).
a) Tính xấp xỉ năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter.
b) Năng lượng giải tỏa tại tâm địa chấn ở 8 độ Richter gấp khoảng bao nhiêu lần năng lượng giải tỏa tại tâm địa chấn ở 5 độ Richter?
Hàm số nào sau đây nghịch biến trên tập xác định của nó?
A. y = log3x.
B.
C.
D. y = logπx.
Cho ba thực dương a, b, c khác 1 và đồ thị ba hàm số lôgarit y = logax, y = logbx, y = logcx được cho bởi Hình 15. Kết luận nào sau đây là đúng với ba số a, b, c?
A. c < a < b.
B. c < b < a.
C. a < b < c.
D. b < c < a.
Điều kiện xác định của là:
A. x ∈ ℝ.
B. x ≥ 0.
C. x ≠ 0.
D. x > 0.
Nghiệm của phương trình log0,5(2 – x) = –1 là:
A. 0.
B. 2,5.
C. 1,5.
D. 2.