Tính đạo hàm cấp hai của các hàm số sau:
a) y = xe2x;
a) Ta có y = xe2x
Suy ra: y' = x' . e2x + x . (e2x)' = e2x + 2xe2x.
Do đó, y'' = 2e2x + 2(e2x + 2xe2x) = 2e2x + 2e2x + 4xe2x = 4e2x + 4xe2x.
Vậy đạo hàm cấp hai của hàm số đã cho là y'' = 4e2x + 4xe2x.
Chuyển động của một vật gắn trên con lắc lò xo (khi bỏ qua ma sát và sức cản không khí) được cho bởi phương trình sau:
x(t) = ,
ở đó x tính bằng centimet và thời gian t tính bằng giây. Tìm gia tốc tức thời của vật tại thời điểm t = 5 giây (làm tròn kết quả đến hàng đơn vị).
Phương trình chuyển động của một hạt được cho bởi s(t) = 10 + 0,5sin , trong đó s tính bằng centimet và t tính bằng giây. Tính gia tốc của hạt tại thời điểm t = 5 giây (làm tròn kết quả đến chữ số thập phân thứ nhất).
Một chuyển động thẳng có phương trình (s tính bằng mét, t tính bằng giây). Tìm gia tốc của vật tại thời điểm t = 4 giây.
Cho hàm số P(x) = ax2 + bx + 3 (a, b là hằng số). Tìm a, b biết P'(1) = 0 và P''(1) = –2.
Tính đạo hàm cấp hai của các hàm số sau:
a) y = ln(x + 1);
b) y = tan2x.
Nhận biết ý nghĩa cơ học của đạo hàm cấp hai
Xét một chuyển động có phương trình s = 4cos2πt.
a) Tính vận tốc tức thời của chuyển động tại thời điểm t.
b) Tính gia tốc tức thời tại thời điểm t.