Lớp 10A1 có 6 học sinh giỏi Toán, 4 học sinh giỏi Lý, 5 học sinh giỏi Hóa, 2 học sinh giỏi Toán và Lý, 3 học sinh giỏi Toán và Hóa, 2 học sinh giỏi Lý và Hóa, 1 học sinh giỏi cả 3 môn Toán, Lý, Hóa. Số học sinh giỏi ít nhất một môn (Toán, Lý, Hóa) của lớp 10A1 là:
Đáp án đúng là: D
Gọi T là tập hợp các bạn học sinh giỏi Toán, khi đó |T| = 6;
L là tập hợp các bạn học sinh giỏi Lý, khi đó |L| = 4;
H là tập hợp các bạn học sinh giỏi Hóa, khi đó |H| = 5.
Do đó ta có:
T ∩ L là tập hợp các bạn học sinh vừa giỏi môn Toán vừa giỏi Lý nên |T ∩ L| = 2;
T ∩ H là tập hợp các bạn học sinh vừa giỏi môn Toán vừa giỏi Hóa nên |T ∩ H| = 3;
H ∩ L là tập hợp các bạn học sinh vừa giỏi môn Hóa vừa giỏi Lý nên |H ∩ L| = 2.
T ∩ L ∩ H là tập hợp các bạn học sinh vừa giỏi môn Toán vừa giỏi Lý và vừa giỏi Hóa nên |T ∩ L ∩ H | = 1.
Tập hợp số học sinh giỏi ít nhất một môn là T ∪ L ∪ H. Khi đó:
|T ∪ L ∪ H| = |T| + |L| + |H| – |T ∩ L| – |T ∩ H| – |H ∩ L| + |T ∩ L ∩ H |
= 6 + 4 + 5 – 2 – 3 – 2 + 1 = 9.
Vậy có 9 học sinh của lớp 10A1 vừa giỏi môn Toán vừa giỏi Lý và vừa giỏi Hóa.
Cho hình chữ nhật ABCD tâm O. Gọi M, N lần lượt là trung điểm của các cạnh AB, AD. Chọn khẳng định đúng trong các khẳng định sau:
Cho tập hợp A và a là một phần tử của tập hợp A. Trong các mệnh đề sau, mệnh đề nào sai?
Mệnh đề phủ định của mệnh đề “Phương trình ax2 + bx + c = 0 (a ≠ 0) vô nghiệm” là:
Cho điểm M(x0; y0) nằm trên đường tròn đơn vị thỏa mãn xOM = . Khi đó phát biểu nào dưới đây là sai?
Cho tam giác đều ABC nội tiếp đường tròn tâm O bán kính bằng 1. Gọi M là điểm nằm trên đường tròn (O), độ dài vectơ bằng
Cho tam giác ABC, có các cạnh AB = c, AC = b, BC = a. Định lí sin được phát biểu:
Cho hai tập hợp (1; 3) và [2; 4]. Giao của hai tập hợp đã cho là