Độ dốc của mái nhà, mặt sân, con đường thẳng là tang của góc tạo bởi mái nhà, mặt sân, con đường thẳng đó với mặt phẳng nằm ngang. Độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá . Hỏi theo đó, góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá bao nhiêu độ? (Làm tròn kết quả đến chữ số thập phân thứ hai).
Gọi a là góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang.
Vì độ dốc của đường thẳng dành cho người khuyết tật được quy định là không quá nên .
Vậy góc tạo bởi đường dành cho người khuyết tật và mặt phẳng nằm ngang không vượt quá 4,76°.
Cho hình chóp S.ABC có SA ^ (ABC), AB = AC = a, . Gọi M là trung điểm của BC.
a) Chứng minh rằng là một góc phẳng của góc nhị diện [S, BC, A].
Cho hình chóp S.ABC có SA ^ (ABC). Gọi H là hình chiếu của A trên BC.
a) Chứng minh rằng (SAB) ^ (ABC) và (SAH) ^ (SBC).
Cho hình hộp chữ nhật ABCD.A'B'C'D'.
a) Chứng minh rằng (BDD'B') ^ (ABCD).
b) Xác định hình chiếu của AC' trên mặt phẳng (ABCD).
Cho hình chóp tam giác đều S.ABC, cạnh đáy bằng a, cạnh bên bằng . Tính số đo góc nhị diện [S, BC, A].
Cho hình lập phương ABCD.A'B'C'D' có cạnh bằng a.
a) Tính độ dài đường chéo của hình lập phương.
c) Gọi O là tâm của hình vuông ABCD. Chứng minh rằng là một góc phẳng của góc nhị diện [C, BD, C']. Tính (gần đúng) số đo của các góc nhị diện [C, BD, C'], [A, BD,C'].
Cho hình chóp đều S.ABC, đáy có cạnh bằng a, cạnh bên bằng b.
a) Tính sin của góc tạo bởi cạnh bên và mặt đáy.
Với giả thiết như ở Ví dụ 3, Cho hình chóp S.ABCD có đáy là hình chữ nhật và SA ^ (ABCD). Gọi B', C', D' tương ứng là hình chiếu của A trên SB, SC, SD. Chứng minh rằng:
a) Các mặt phẳng (AB'C'D') và (ABCD) cùng vuông góc với (SAC);
Trong cửa sổ ở Hình 7.56, cánh và khung cửa là các nửa hình tròn có đường kính 80 cm, bản lề được đính ở điểm chính giữa O của các cung tròn khung và cánh cửa. Khi cửa mở, đường kính của khung và đường kính của cánh song song với nhau và cách nhau một khoảng d; khi cửa đóng, hai đường kính đó trùng nhau. Hãy tính số đo của góc nhị diện có hai nửa mặt phẳng tương ứng chứa cánh, khung cửa khi d = 40 cm.
b) Giả sử tam giác ABC vuông tại A, , AC = a, . Tính số đo của góc nhị diện [S, BC, A].
Hai mái nhà trong Hình 7.72 là hai hình chữ nhật. Giả sử AB = 4,8 m; OA = 2,8 m; OB = 4 m.
a) Tính (gần đúng) số đo của góc nhị diện tạo bởi hai nửa mặt phẳng tương ứng chứa hai mái nhà.
Cho hình chóp S.ABCD, đáy ABCD là một hình chữ nhật có tâm O, SO ^ (ABCD). Chứng minh rằng hai mặt phẳng (SAC) và (SBD) vuông góc với nhau khi và chỉ khi ABCD là một hình vuông.