Để biểu diễn miền nghiệm của bất phương trình bậc nhất hai ẩn 2x + y – 4 > 0, bạn An đã làm theo 3 bước:
Bước 1: Trên mặt phẳng tọa độ Oxy, vẽ đường thẳng ∆: 2x + y – 4 = 0.
Bước 2: Lấy một điểm (0; 0) không thuộc ∆. Tính 2. 0 + 0 – 4 = ‒ 4.
Bước 3: Kết luận:
Do ‒4 < 0 nên miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ ∆) chứa điểm (0; 0).
Bước 4: Biểu diễn miền nghiệm trên trục tọa độ Oxy:

Cô giáo kiểm tra bài bạn An và nói rằng bài bạn làm sai. Bạn An đã làm sai từ bước nào?
Giải bởi Vietjack
Hướng dẫn giải
Đáp án đúng là: C
Bạn An đã làm sai ở Bước 3: Kết luận:
Do ‒4 < 0 nên miền nghiệm của bất phương trình 2x + y – 4 > 0 là nửa mặt phẳng (không kể bờ ∆) không chứa điểm (0; 0).
Xác định miền nghiệm của bất phương trình hai ẩn:
– Miền nghiệm của bất phương trình bậc nhất hai ẩn:
Xét bất phương trình ax + by + c < 0. Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c < 0 được gọi là miền nghiệm của bất phương trình ax + by + c < 0.
– Phương pháp xác định miền nghiệm của bất phương trình bậc nhất hai ẩn ax + by + c < 0 như sau:
+ Bước 1: Trên mặt phẳng Oxy, vẽ đường thẳng Δ: ax + by + c = 0.
+ Bước 2: Lấy một điểm (x0; y0) không thuộc Δ. Tính ax0 + by0 + c.
+ Bước 3: Kết luận:
Nếu ax0 + by0 + c < 0 thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ Δ) chứa điểm (x0; y0).
Nếu ax0 + by0 + c > 0 thì miền nghiệm của bất phương trình đã cho là nửa mặt phẳng (không kể bờ Δ) không chứa điểm (x0; y0).
– Chú ý: Đối với các bất phương trình bậc nhất hai ẩn dạng ax + by + c ≤ 0 (hoặc ax + by + c ≥ 0) thì miền nghiệm là miền nghiệm của bất phương trình ax + by + c < 0 (hoặc ax + by + c > 0) kể cả bờ.
Bài tập liên quan:
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (một sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó loại xe A có 10 chiếc, loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng.
A. 10 xe loại A và 9 xe loại B;
B. 5 xe loại A và 4 xe loại B;
C. 3 xe loại A và 9 xe loại B;
D. 10 xe loại A và 2 xe loại B.
Cách giải:
Đáp án đúng là: B
Gọi x là số xe loại A được thuê, y là số xe loại B được thuê. (x ≥ 0, y ≥ 0)
Do loại xe A có 10 chiếc, loại xe B có 9 chiếc nên x ≤ 10, y ≤ 9.
Do xe A chỉ chở tối đa 20 người và 0,6 tấn hàng, xe B chở tối đa 10 người và 1,5 tấn hàng mà cần thuê xe để chở trên 140 người và trên 9 tấn hàng nên:
Khi đó ta có hệ bất phương trình của x và y như sau:
⇔
Biểu diễn miền nghiệm của hệ bất phương trình trên hệ trục tọa độ Oxy:
- Biểu diễn miền nghiệm D1 của bất phương trình x ≥ 0.
+ Đường thẳng x = 0 là trục Oy.
Miền nghiệm D1 của bất phương trình x ≥ 0 là nửa mặt phẳng bờ Oy (kể cả bờ Oy) nằm bên phải trục Oy.
* Tương tự ta biểu diễn các miền nghiệm:
- Miền nghiệm D2 của bất phương trình y ≥ 0: là nửa mặt phẳng bờ Ox (kể cả bờ Ox) nẳm bên trên trục Ox.
- Miền nghiệm D3 của bất phương trình x ≤ 10: là nửa mặt phẳng bờ d1 (kể cả bờ d1: x = 10) chứa điểm O.
- Miền nghiệm D4 của bất phương trình y ≤ 9: là nửa mặt phẳng bờ d2 (kể cả bờ d2: y = 9) chứa điểm O.
- Miền nghiệm D5 của bất phương trình 2x + y ≥ 14:
+ Vẽ đường thẳng d3: 2x + y = 14.
+ Xét điểm O(0; 0): thay x = 0, y = 0 vào bất phương trình ta có 2. 0 + 0 = 0 ≥ 14 là mệnh đề sai nên điểm O(0; 0) không thỏa mãn bất phương trình 2x + y ≥ 14.
Miền nghiệm D5 của bất phương trình 2x + y ≥ 14 là nửa mặt phẳng bờ d3 (kể cả bờ d3) không chứa điểm O.
- Tương tự miền nghiệm D6 của bất phương trình 2x + 5y ≥ 30 là nửa mặt phẳng bờ d4 (kể cả bờ d4: 2x + 5y = 30) không chứa điểm O.
Ta có đồ thị:

Miền nghiệm của hệ bất phương trình là miền tứ giác ABCD:
A(2,5; 9), B(10; 9), C(10; 2), D(5; 4)
Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu nên tổng số tiền thuê là:
F (x; y) = 4x + 3y.
Để chi phí vận chuyển là thấp nhất thì F (x; y) là nhỏ nhất.
Tại A(2,5; 9): F = 4. 2,5 + 3. 9 = 37;
Tại B(10; 9): F = 4. 10 + 3. 9 = 67;
Tại C(10; 2): F = 4. 10 + 3. 2 = 46;
Tại D(5; 4): F = 4. 5 + 3. 4 = 32;
Vậy F (x; y) đạt giá trị nhỏ nhất là 32 khi x = 5 và y = 4.
Vậy cần thuê 5 xe loại A và 4 xe loại B để số tiền thuê nhỏ nhất.
Tham khảo thêm một số tài liệu liên quan:
Một công ty TNHH trong một đợt quảng cáo và bán khuyến mãi hàng hóa (một sản phẩm mới của công ty) cần thuê xe để chở trên 140 người và trên 9 tấn hàng. Nơi thuê chỉ có hai loại xe A và B. Trong đó loại xe A có 10 chiếc, loại xe B có 9 chiếc. Một chiếc xe loại A cho thuê với giá 4 triệu, loại B giá 3 triệu. Hỏi phải thuê bao nhiêu xe mỗi loại để chi phí vận chuyển là thấp nhất. Biết rằng xe A chỉ chở tối đa 20 người và 0,6 tấn hàng. Xe B chở tối đa 10 người và 1,5 tấn hàng.
Miền nghiệm của hệ bất phương trình là phần không tô màu đậm của hình vẽ nào trong các hình vẽ sau:
Cặp số nào sau đây là nghiệm của bất phương trình bậc nhất hai ẩn: 2x + y – 1 < 0?
Cho hệ bất phương trình bậc nhất hai ẩn:
Và F(x; y) = 3x + 2y. Tìm giá trị lớn nhất của F(x; y).
Phần không tô đậm trong hình vẽ dưới đây biểu diễn tập nghiệm của hệ bất phương trình nào trong các hệ bất phương trình sau?

Miền nghiệm của bất phương trình: 3(x – 1) + 4(y – 2) < 5x – 3 là nửa mặt phẳng chứa điểm:
Miền nghiệm của hệ bất phương trình không chứa điểm nào sau đây?
Cho bất phương trình x - 3y – 1 ≤ 0. Chọn khẳng định đúng trong các khẳng định sau:
Điền vào chỗ trống từ còn thiếu: “Trong mặt phẳng tọa độ Oxy, tập hợp các điểm (x0; y0) sao cho ax0 + by0 + c ≥ 0 được gọi là ……của bất phương trình ax + by + c ≥ 0”.
Cho hệ bất phương trình . Miền nghiệm của hệ bất phương trình biểu diễn bởi miền tam giác OAB. Ba điểm nào sau đây có tọa độ đúng của O, A và B?
Hình vẽ sau biểu diễn miền nghiệm (phần không bị gạch) của bất phương trình bậc nhất hai ẩn nào?

Trong các bất phương trình sau đây, đâu là bất phương trình bậc nhất hai ẩn?
Một gia đình cần ít nhất 900 đơn vị protein và 400 đơn vị lipit trong thức ăn mỗi ngày. Mỗi ki ‒ lo ‒ gam thịt bò chứa 800 đơn vị protein và 200 đơn vị lipit. Mỗi ki ‒ lo ‒ gam thịt lợn chứa 600 đơn vị protein và 400 đơn vị lipit. Biết rằng gia đình này chỉ mua nhiều nhất 1,6 kg thịt bò và 1,1 kg thịt lợn. Giá tiền một kg thịt bò là 250 nghìn đồng, 1 kg thịt lợn là 110 nghìn đồng. Gọi x, y lần lượt là số kg thịt bò và thịt lợn mà gia đình đó cần mua để tổng số tiền họ phải trả là ít nhất mà vẫn đảm bảo lượng protein và lipit trong thức ăn. Giá trị x2 + y2 là: