d) Mọi số thực đều lớn hơn số đối của nó.
d) Bằng kí hiệu ∀ ta viết mệnh đề đã cho dưới dạng kí hiệu là:
“∀x ∈ ℤ, x > – x ”.
Mệnh đề
- Những khẳng định có tính hoặc đúng hoặc sai được gọi là mệnh đề logic (hay mệnh đề).
- Mệnh đề là một khẳng định đúng hoặc sai.
- Một khẳng định đúng gọi là mệnh đề đúng.
- Một khẳng định sai gọi là mệnh đề sai.
- Một mệnh đề không thể vừa đúng vừa sai.
Chú ý:
+ Người ta thường sử dùng các chữ cái in hoa P, Q, R, … để kí hiệu các mệnh đề.
+ Những mệnh đề liên quan đến toán học được gọi là mệnh đề toán học.
Xem thêm một số kiến thức liên quan:
20 câu Trắc nghiệm Mệnh đề (Chân trời sáng tạo) có đáp án – Toán lớp 10
Lý thuyết Mệnh đề (Chân trời sáng tạo) hay, chi tiết | Toán lớp 10
Cho tứ giác ABCD. Xét mệnh đề “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”. Mệnh đề đảo của mệnh đề đó là:
c) C: “Hai đường thẳng y = 2x + 1 và y = – 2x + 1 không song song với nhau”;
Cho mệnh đề kéo theo có dạng P ⇒ Q: “Vì 120 chia hết cho 6 nên 120 chia hết cho 9”.
a) Mệnh đề trên đúng hay sai?
Cho phương trình ax2 + bx + c = 0.
a) Xét mệnh đề “Nếu a + b + c = 0 thì phương trình ax2 + bx + c = 0 có một nghiệm bằng 1”. Mệnh đề này đúng hay sai?
Cho a, b là hai số thực thỏa mãn a + b < 2. Kết luận nào sau đây là đúng?
Trong các phát biểu sau, phát biểu nào là mệnh đề toán học?
a) Số π là số vô tỉ;
b) Bình phương của mọi số thực đều là số dương;
c) Tồn tại số thực x mà x lớn hơn số nghịch đảo của nó;
d) Fansipan là ngọn núi cao nhất Việt Nam.
Cho tam giác ABC với đường trung tuyến AM. Xét các mệnh đề sau:
P: “Tam giác ABC vuông tại A”.
Q: “Độ dài đường trung tuyến AM bằng nửa độ dài cạnh BC”.
a) Phát biểu mệnh đề P ⇒ Q, Q ⇒ P và xác định tính đúng sai của mỗi mệnh đề đó.
c) Nêu điều kiện cần và đủ để phương trình ax2 + bx + c = 0 có một nghiệm bằng 1.
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
Cho mệnh đề A: “Nghiệm của phương trình x2 – 5 = 0 là số hữu tỉ”. Mệnh đề phủ định của mệnh đề trên là:
Cho mệnh đề kéo theo có dạng P ⇒ Q: “Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường”
a) Mệnh đề trên đúng hay sai?