Cho mệnh đề kéo theo có dạng P ⇒ Q: “Vì 120 chia hết cho 6 nên 120 chia hết cho 9”.
a) Mệnh đề trên đúng hay sai?
a) Xét mệnh đề kéo theo P ⇒ Q: “Vì 120 chia hết cho 6 nên 120 chia hết cho 9”.
Khi đó P: “120 chia hết cho 6”; Q: “120 chia hết cho 9”.
Ta có 120 : 6 = 20 nên 120 chia hết cho 6 suy ra mệnh đề P đúng.
120 : 9 = 13 (dư 3) nên 120 không chia hết cho 9 suy ra mệnh đề Q sai.
Do đó mệnh đề P ⇒ Q là mệnh đề sai.
Cho tứ giác ABCD. Xét mệnh đề “Nếu tứ giác ABCD là hình chữ nhật thì tứ giác ABCD có hai đường chéo bằng nhau”. Mệnh đề đảo của mệnh đề đó là:
c) C: “Hai đường thẳng y = 2x + 1 và y = – 2x + 1 không song song với nhau”;
Cho phương trình ax2 + bx + c = 0.
a) Xét mệnh đề “Nếu a + b + c = 0 thì phương trình ax2 + bx + c = 0 có một nghiệm bằng 1”. Mệnh đề này đúng hay sai?
Cho a, b là hai số thực thỏa mãn a + b < 2. Kết luận nào sau đây là đúng?
Trong các phát biểu sau, phát biểu nào là mệnh đề toán học?
a) Số π là số vô tỉ;
b) Bình phương của mọi số thực đều là số dương;
c) Tồn tại số thực x mà x lớn hơn số nghịch đảo của nó;
d) Fansipan là ngọn núi cao nhất Việt Nam.
Cho tam giác ABC với đường trung tuyến AM. Xét các mệnh đề sau:
P: “Tam giác ABC vuông tại A”.
Q: “Độ dài đường trung tuyến AM bằng nửa độ dài cạnh BC”.
a) Phát biểu mệnh đề P ⇒ Q, Q ⇒ P và xác định tính đúng sai của mỗi mệnh đề đó.
c) Nêu điều kiện cần và đủ để phương trình ax2 + bx + c = 0 có một nghiệm bằng 1.
Dùng kí hiệu ∀ hoặc ∃ để viết các mệnh đề sau:
a) Có một số nguyên không chia hết cho chính nó.
Cho mệnh đề A: “Nghiệm của phương trình x2 – 5 = 0 là số hữu tỉ”. Mệnh đề phủ định của mệnh đề trên là:
Cho mệnh đề kéo theo có dạng P ⇒ Q: “Nếu tứ giác ABCD là hình bình hành thì tứ giác ABCD có hai đường chéo cắt nhau tại trung điểm mỗi đường”
a) Mệnh đề trên đúng hay sai?