Cho tứ diện đều ABCD. Gọi M, N lần lượt là trung điểm của cạnh BC và AD. Chứng minh rằng: MN ⊥ BC và MN ⊥ AD (h.3.42)
Tứ diện đều ABCD nên các mặt của tứ diện là các tam giác đều bằng nhau
Ta có: ∆BAD = ∆CAD (c.c.c)
Suy ra hai đường trung tuyến tương ứng bằng nhau: BN = CN
⇒ ΔBNC cân tại N.
Do NM là đường trung tuyến của tam giác cân BNC nên NM đồng thời là đường cao:
⇒ MN ⊥ BC
Chứng minh tương tự MN ⊥ AD
Cho hình chóp tam giác đều S.ABC có cạnh đáy bằng 3a, cạnh bên bằng 2a. Tính khoảng cách từ S tới mặt đáy (ABC).
Cho hình hộp chữ nhật ABCD.A'B'C'D; có AB = a, BC = b, CC' = c.
a) Tính khoảng cách từ B đến mặt phẳng (ACC'A').
b) Tính khoảng cách giữa hai đường thẳng BB' và AC'.
Cho hình lập phương ABCD.A'B'C'D'
a) Chứng minh rằng B'D vuông góc với mặt phẳng (BA'C')
b) Tính khoảng cách giữa hai mặt phẳng (BA'C') và (ACD')
c) Tính khoảng cách giữa hai đường thẳng BC' và CD'
Cho tứ diện ABCD cạnh a. Tính khoảng cách giữa hai cạnh đối diện của tứ diện đều đó.
Chứng minh rằng nếu đường thẳng nối trung điểm hai cạnh AB và CD của tứ diện ABCD là đường vuông góc chung của AB và CD thì AC = BD và AD = BC.
Cho hình lập phương ABCD.A'B'C'D' cạnh a. Chứng minh rằng các khoảng cách từ các điểm B, C, D, A', B' và D' đến đường chéo AC' đều bằng nhau. Tính khoảng cách đó.
Trong các mệnh đề sau đây mệnh đề nào là đúng?
a) Đường thẳng Δ là đường vuông góc chung của hai đường thẳng a và b nếu Δ ⊥a và Δ ⊥b.
b) Gọi (P) là mặt phẳng song song với cả hai đường thẳng a và b chéo nhau thì đường vuông góc chung của a và b luôn luôn vuông góc với (P).
c) Gọi Δ là đường vuông góc chung của hai đường thẳng chéo nhau a và b thì Δ là giao tuyến của hai mặt phẳng (a, Δ) và (b, Δ).
d) Cho hai đường thẳng chéo nhau a và b. Đường thẳng nào đi qua một điểm M trên a đồng thời cắt b tại N và vuông góc với b thì đó là đường vuông góc chung của a và b.
e) Đường vuông góc chung Δ của hai đường thẳng chéo nhau a và b nằm trong mặt phẳng chứa đường này và vuông góc với đường kia.
Cho đường thẳng a song song với mặt phẳng (α). Chứng minh rằng khoảng cách giữa đường thẳng a và mặt phẳng (α) là bé nhất so với khoảng cách từ một điểm bất kì thuộc a tới một điểm bất kì thuộc mặt phẳng (α).
Cho tứ diện S.ABC có SA vuông góc với mặt phẳng (ABC). Gọi H , K lần lượt là trực tâm của tam giác ABC và SBC.
a) Chứng minh ba đường thẳng AH, SK, BC đồng quy.
b) Chứng minh rằng SC vuông góc với mặt phẳng (BHK) và HK vuông góc với mặt phẳng (SBC).
c) Xác định đường vuông góc chung của BC và SA.
Cho điểm O và mặt phẳng (α). Chứng minh rằng khoảng cách từ điểm O đến mặt phẳng (α) là bé nhất so với các khoảng cách từ O tới một điểm bất kì của mặt phẳng (α).
Cho điểm O và đường thẳng a. Chứng minh rằng khoảng cách từ điểm O đến đường thẳng a là bé nhất so với các khoảng cách từ O đến một điểm bất kì của đường thẳng a
Chứng minh rằng khoảng cách giữa hai đường thẳng chéo nhau là bé nhất so với khoảng cách giữa hai điểm bất kì lần lượt nằm trên hai đường thẳng ấy.
Cho hai mặt phẳng (α) và (β). Chứng minh rằng khoảng cách giữa hai mặt phẳng song song (α) và (β) là nhỏ nhất trong các khoảng cách từ một điểm bất kì của mặt phẳng này tới một điểm bất kì của mặt phẳng kia.