a) Trong Hình 9, hình nào có tâm đối xứng? Tìm tâm đối xứng (nếu có).
b) Nêu tên một hình có vô số tâm đối xứng.
a) ⦁ Hình 9a:
Ta đặt hình bình hành ở Hình 9a có các đỉnh là A, B, C, D (hình vẽ).
Hình bình hành ABCD có tâm O là giao điểm hai đường chéo.
Suy ra O là trung điểm của AC, do đó C = ĐO(A) và A = ĐO(C).
Chứng minh tương tự, ta được B = ĐO(D) và D = ĐO(B).
Do đó ảnh của hình bình hành ABCD qua ĐO là chính nó.
Vậy O là tâm đối xứng của Hình 9a.
⦁ Hình 9b:
Giả sử I là một điểm trên Hình 9b (hình vẽ).
Lấy điểm A bất kì trên Hình 9b sao cho A ≠ I.
Khi đó ta luôn xác định được một điểm A’ trên Hình 9b sao cho A’ = ĐI(A).
Lấy điểm B trùng I. Khi đó B = ĐI(B).
Tương tự như vậy, ta chọn các điểm bất kì nằm trên Hình 9b, ta đều xác định được ảnh của các điểm đó qua ĐI trên Hình 9b.
Vậy I là tâm đối xứng của Hình 9b.
⦁ Hình 9c:
Chứng minh tương tự Hình 9b, ta được G là tâm đối xứng của Hình 9c.
⦁ Hình 9d không có tâm đối xứng.
b) Hình có vô số tâm đối xứng là:
– Đường thẳng: do đường thẳng không có điểm đầu và điểm cuối nên mỗi điểm bất kì nằm trên đường thẳng đều là tâm đối xứng của đường thẳng đó;
– Hình gồm hai đường thẳng song song: tâm đối xứng của hình gồm hai đường thẳng song song luôn di động trên một đường thẳng cố định, đường thẳng đó là trục đối xứng của hai đường thẳng đã cho.
Cụ thể, giả sử O là tâm đối xứng của hai đường thẳng song song a và b. Khi đó O di động trên đường thẳng c là trục đối xứng của hai đường thẳng a và b.
Nghệ thuật cắt giấy Kirigami của Nhật Bản đã sử dụng rất nhiều phép đối xứng khi cắt để tạo ra các hình đẹp. Hãy tìm trục đối xứng và tâm đối xứng của các hình trong Hình 13.
Vận dụng phép đối xứng tâm và đối xứng trục để cắt hoa văn trang trí theo hướng dẫn sau:
– Lấy một tờ giấy hình vuông, gấp đôi, gấp tư rồi gấp làm tám (Hình 14a).
– Vẽ hoa và lá trên bề mặt tam giác (Hình 14b).
– Dùng kéo cắt theo đường đã vẽ (Hình 14c).
– Trải phẳng tờ giấy ra để thấy hoa văn trang trí gồm hoa và lá (Hình 14d).
Tìm tâm đối xứng và trục đối xứng của hoa văn vừa làm.
Trong mặt phẳng tọa độ Oxy, cho đường tròn (C) có phương trình:
(C): x2 + y2 – 4x – 5 = 0. Viết phương trình ảnh của (C) qua phép đối xứng tâm O.
Trong các hình sau, hình nào có tâm đối xứng?
Tồn tại hay không phép biến hình biến mỗi hình phẳng sau đây thành chính nó?
Cho đường tròn (O; R) và điểm I không nằm trên đường tròn. Với mỗi điểm A trên (O; R) ta xét hình vuông ABCD có tâm là I. Điểm C di động trên đường nào khi A di động trên đường tròn (O; R)?
Trong Hình 10, hình nào có tâm đối xứng? (Mỗi chữ cái là một hình).
Cho điểm O. Gọi f là quy tắc xác định như sau:
a) Với điểm M khác O, xác định điểm M’ sao cho O là trung điểm của MM’ (Hình 1).
b) Với điểm M trùng với O thì f biến điểm M thành chính nó.
Hỏi f có phải là phép biến hình không?
Trong Hình 11, hình nào có trục đối xứng, hình nào có tâm đối xứng?
Giả sử ĐO là phép đối xứng tâm O. Lấy hai điểm tùy ý A, B sao cho ba điểm O, A, B không thẳng hàng. Gọi A’, B’ lần lượt là ảnh của A, B qua ĐO. So sánh tam giác OAB và tam giác O’A’B’ rồi so sánh A’B’ và AB.
Trong Hình 6, tìm các số ghi tại điểm đối xứng qua tâm bia với điểm ghi các số 20; 7; 9.
Trong Hình 12, tìm phép đối xứng biến hình mũi tên (A) thành hình mũi tên (B) và tìm phép đối xứng biến hình mũi tên (B) thành hình mũi tên (C).
Trong mặt phẳng tọa độ Oxy, cho các điểm I(1; 1), M(2; 2), N(0; –3) và P(–1; –2). Tìm tọa độ các điểm M’ = ĐI(M), N’ = ĐI(N), P’ = ĐI(P).
Trong mặt phẳng tọa độ Oxy, tìm ảnh qua ĐO của
a) điểm M(3; –4);
b) đường thẳng d: x – 3y + 6 = 0;
c) đường tròn (C): (x + 2)2 + (y – 1)2 = 4.