Xét tính chẵn lẻ của hàm số
A. hàm số lẻ
B. hàm số chẵn
C. không xét được tính chẵn lẻ
D. hàm số không chẵn, không lẻ
Đáp án B
Tìm m để đồ thị hàm số sau nhận trục tung làm trục đối xứng y =
Tìm m để đồ thị hàm số sau nhận gốc tọa độ O làm tâm đối xứng y = − ( − 9) + (m + 3)x + m − 3.
Cho hàm số y = . Tìm các điểm cố định mà đồ thị hàm số đã cho luôn đi qua với mọi m.
Nêu cách tịnh tiến đồ thị hàm số y = −2 để được đồ thị hàm số y = −2 − 6x + 3.
Tịnh tiến đồ thị hàm số y = +1 liên tiếp sang phải 2 đơn vị và lên trên 1 đơn vị ta được đồ thị của hàm số nào?
Cho hàm số y = . Tìm m để điểm M (−1; 2) thuộc đồ thị hàm số đã cho
Tìm trên đồ thị hàm số y = + 3x − 4 hai điểm đối xứng nhau qua gốc tọa độ.
Xác định parabol (P): y = a + bx + c, a 0 đỉnh I biết (P) đi qua M (4; 3) cắt Ox tại N (3; 0) và P sao cho INP có diện tích bằng 1, biết hoành độ điểm P nhỏ hơn 3.
Xác định parabol (P): y = a + bx + c, a ≠ 0 biết hàm số có giá trị nhỏ nhất bằng khi x= và nhận giá trị bằng 1 khi x = 1.
Cho hai đường thẳng d: y = x + 2m, d′: y = 3x + 2 (m là tham số). Tìm m để ba đường thẳng d, d′ và d′′: y = −mx + 2 phân biệt đồng quy.
Xét sự biến thiên của hàm số trên tập xác định của nó. Áp dụng tìm số nghiệm của phương trình
Cho hàm số bậc nhất có đồ thị là đường thẳng d. Tìm hàm số đó biết d đi qua M (1; 2) và cắt hai tia Ox, Oy tại P, Q sao cho nhỏ nhất.