Câu hỏi:

10/12/2024 0.9 K

Một phân xưởng sản xuất hai kiểu mũ. Thời gian để làm ra một chiếc mũ kiểu thứ nhất nhiều gấp hai lần thời gian làm ra chiếc mũ kiểu thứ hai. Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong 1 giờ phân xưởng làm được 60 chiếc. Phân xưởng làm việc 8 tiếng mỗi ngày và thị trường tiêu thụ tối đa trong một ngày là 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai. Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn đồng, một chiếc mũ kiểu thứ hai là 15 nghìn đồng. Tính số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được là cao nhất.

Trả lời:

verified Giải bởi Vietjack

Gọi x, y lần lượt là số lượng mũ kiểu thứ nhất và kiểu thứ hai trong một ngày mà phân xưởng cần sản xuất để tiền lãi thu được cao nhất. (Điều kiện: x,y )

Trong một ngày thị trường tiêu thụ tối đa 200 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai nên ta có: 0 ≤ x ≤ 200; 0 ≤ y ≤ 240.

Tiền lãi khi bán một chiếc mũ kiểu thứ nhất là 24 nghìn và một chiếc mũ kiểu thứ hai là 15 nghìn nên tổng số tiền lãi khi bán mũ là T = 24x + 15y.

Nếu chỉ sản xuất toàn kiểu mũ thứ hai thì trong một giờ phân xưởng làm được 60 chiếc nên thời gian để làm một chiếc mũ kiểu thứ hai là 160   (giờ).

Thời gian làm ra một chiếc kiểu mũ thứ nhất nhiều gấp hai lần thời gian làm ra một chiếc mũ kiểu thứ hai nên thời gian để làm một chiếc mũ kiểu thứ nhất là 2.160=130 (giờ).

Thời gian để làm x chiếc mũ kiểu thứ nhất là 130x  (giờ).

Thời gian để làm y chiếc mũ kiểu thứ hai là 160y  (giờ).

Tổng thời gian để làm hai loại mũ trong một ngày là 130x+160y  (giờ).

Vì một ngày phân xưởng làm việc 8 tiếng nên 130x+160y82x+y480 .

Khi đó bài toán đã cho đưa về: Tìm x, y là nghiệm của hệ bất phương trình 2x+y4800x2000y240    I sao cho T = 24x + 15y có giá trị lớn nhất.

Trước hết, ta xác định miền nghiệm của hệ bất phương trình (I).

Miền nghiệm của hệ bất phương trình (I) là miền ngũ giác ACDEO với A(0; 240), C(120; 240), D(200; 80), E(200; 0), O(0; 0) (hình dưới).

(A là giao điểm của trục tung và đường thẳng y = 240; C là giao điểm của đường thẳng y = 240 và 2x + y = 480, D là giao điểm của đường thẳng 2x + y = 480 và x = 200, E là giao điểm của trục hoành và đường thẳng x = 200).

Một phân xưởng sản xuất hai kiểu mũ. Thời gian để làm ra một chiếc mũ kiểu thứ nhất nhiều gấp hai (ảnh 1)

Người ta chứng minh được: Biểu thức T = 24x + 15y có giá trị lớn nhất tại một trong các đỉnh của ngũ giác ACDEO.

Tính giá trị của biểu thức T = 24x + 15y tại các cặp số (x; y) là tọa độ các đỉnh của ngũ giác ACDEO:

+ Tại đỉnh A: T = 24 . 0 + 15 . 240 = 3600

+ Tại đỉnh C: T = 24 . 120 + 15 . 240 = 6480

+ Tại đỉnh D: T = 24 . 200 + 15 . 80 = 6000

+ Tại đỉnh E: T = 24 . 200 + 15 . 0 = 4800

+ Tại đỉnh O: T = 0

Có 0 < 3600 < 4800 < 6000 < 6480

So sánh giá trị của biểu thức T tại các đỉnh, ta thấy T đạt giá trị lớn nhất bằng 6480 khi x 120 và y = 240 ứng với tọa độ đỉnh C.

Vậy để tiền lãi thu được là cao nhất, trong một ngày xưởng cần sản xuất 120 chiếc mũ kiểu thứ nhất và 240 chiếc mũ kiểu thứ hai. Khi đó tiền lãi là 6480 nghìn đồng hay 6 480 000 đồng.

 Phương pháp giải

– Trên mặt phẳng tọa độ Oxy, tập hợp các điểm có tọa độ (x0; y0) là nghiệm của hệ bất phương trình bậc nhất hai ẩn được gọi là miền nghiệm của hệ bất phương trình đó.

– Để biểu diễn miền nghiệm của hệ bất phương trình bậc nhất hai ẩn trên mặt phẳng tọa độ Oxy, ta thực hiện như sau:

+ Trên cùng mặt phẳng tọa độ, biểu diễn miền nghiệm của mỗi bất phương trình của hệ.

+ Phần giao của các miền nghiệm là miền nghiệm của hệ bất phương trình.

Xem thêm một số kiến thức liên quan:

Lý thuyết Hệ bất phương trình bậc nhất hai ẩn (Kết nối tri thức) hay, chi tiết | Toán lớp 10

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Biểu diễn miền nghiệm của hệ bất phương trình:

a) x+2y<4         yx+5;

b) 4x2y>8x0y0.

Xem đáp án » 18/07/2024 238

Câu 2:

Miền không bị gạch trong mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây?

Miền không bị gạch trong mỗi Hình 12a, 12b là miền nghiệm của hệ bất phương trình nào cho ở dưới đây (ảnh 1)

a) x+y<2         x>3         y1;

b) y<xx0y>3;

c) y>x+1x2y<1.

Xem đáp án » 06/07/2024 226

Câu 3:

Kiểm tra xem mỗi cặp số (x; y) đã cho có là nghiệm của hệ bất phương trình tương ứng không?

a) 3x+2y6x+4y>4              (0; 2), (1; 0);

b)  4x+y33x+5y12        (– 1; – 3), (0; – 3).

Xem đáp án » 21/07/2024 212

Câu 4:

Cho hệ bất phương trình sau: x2y27x4y162x+y4.

a) Trong cùng mặt phẳng tọa độ Oxy, biểu diễn miền nghiệm của mỗi bất phương trình trong hệ bất phương trình bằng cách gạch bỏ phần không thuộc miền nghiệm của nó.

b) Tìm miền nghiệm của hệ bất phương trình đã cho.

Xem đáp án » 22/07/2024 189

Câu 5:

Chỉ ra một nghiệm của hệ bất phương trình sau: 2x+y>0x3y<6xy4.

Xem đáp án » 14/07/2024 177

Câu 6:

Quảng cáo sản phẩm trên truyền hình là một hoạt động quan trọng trong kinh doanh của các doanh nghiệp. Theo Thông báo số 10/2019, giá quảng cáo trên VTV1 là 30 triệu đồng cho 15 giây/1 lần quảng cáo vào khoảng 20h30; là 6 triệu đồng cho 15 giây/1 lần quảng cáo vào khung giờ 16h00 – 17h00. Một công ty dự định chi không quá 900 triệu đồng để quảng cáo trên VTV1 với yêu cầu quảng cáo về số lần phát như sau: ít nhất 10 lần quảng cáo vào khoảng 20h30 và không quá 50 lần quảng cáo vào khung giờ 16h00 – 17h00. Gọi x, y lần lượt là số lần phát quảng cáo vào khoảng 20h30 và vào khung giờ 16h00 – 17h00.

Trong toán học, các điều kiện ràng buộc đối với x và y để đáp ứng nhu cầu trên của công ty được thể hiện như thế nào?

Xem đáp án » 15/07/2024 169

Câu 7:

Biểu diễn miền nghiệm của hệ bất phương trình sau: 3xy>32x+3y<62x+y>4.

Xem đáp án » 28/06/2024 157

Câu 8:

Cho hệ bất phương trình sau: xy<3             1x+2y>2      2

a) Mỗi bất phương trình (1) và (2) có là bất phương trình bậc nhất hai ẩn không?

b) Chỉ ra một nghiệm chung của hai bất phương trình (1) và (2) trong hệ trên.

Xem đáp án » 16/07/2024 141