Câu hỏi:

15/07/2024 1.1 K

Hình 11 minh hoạ mặt cắt đứng của một căn phòng trong bảo tàng với mái vòm trần nhà của căn phòng đó có dạng một nửa đường elip. Chiều rộng của căn phòng là 16 m, chiều cao của tượng là 4 m, chiều cao của mái vòm là 3 m.

Hình 11 minh hoạ mặt cắt đứng của một căn phòng trong bảo tàng với mái vòm (ảnh 1)

a) Viết phương trình chính tắc của elip biểu diễn mái vòm trần nhà trong hệ trục tọa độ Oxy (đơn vị trên hai trục là mét).

b) Một nguồn sáng được đặt tại tiêu điểm thứ nhất của elip. Cần đặt bức tượng ở vị tri có toạ độ nào để bức tượng sáng rõ nhất? Giả thiết rằng vòm trần phản xạ ánh sáng. Biết rằng, một tia sáng xuất phát từ một tiêu điểm của elip, sau khi phản xạ tại elip thi sẽ đi qua tiêu điểm còn lại.

Trả lời:

verified Giải bởi Vietjack

a) Gọi phương trình chính tắc của elip cần tìm là x2a2+y2b2=1 (a > b > 0).

Nhìn hình vẽ ta thấy:

– Độ dài trục lớn của elip bằng 16  2a = 16  a = 8 (m).

– Độ dài bán trục bé của elip bằng 3  b = 3 (m).

Vậy phương trình chính tắc của elip cần tìm là x282+y232=1 hay x264+y29=1.

b) Vì một tia sáng xuất phát từ một tiêu điểm của elip, sau khi phản xạ tại elip thi sẽ đi qua tiêu điểm còn lại nên để bức tượng sáng rõ nhất ta sẽ đặt bức tượng ở tiêu điểm còn lại. Toạ độ của vị trí này là (c; 0).

Có c = a2b2=8232=649=55.

Vì tượng cao 4 m nên ta cần đặt bức tượng ở vị trí có toạ độ là 55;  4.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trỉnh chính tắc là x2a2+y2b2=1, trong đó a > b > 0 (Hình 2).

Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trỉnh chính tắc (ảnh 1)

a) Tìm toạ độ hai tiêu điểm F1, F2 của (E).

b) (E) cắt trục Ox tại các điểm A1, A2 và cắt trục Oy tại các điểm B1, B2. Tìm độ dài các đoạn thẳng OA2 và OB2.

Xem đáp án » 18/07/2024 4.1 K

Câu 2:

Cho elip (E): x29+y24=1 với tiêu điểm F2(5;0). Tìm toạ độ điểm M(E) sao cho độ dài F2M nhỏ nhất.

Xem đáp án » 22/07/2024 3.3 K

Câu 3:

Cho elip (E) có phương trình chính tắc là x2a2+y2b2=1 (a > b > 0). Xét đường thẳng Δ1: x = ae.

Cho elip (E) có phương trình chính tắc là x^2/a^2 + y^2/b^2 = 1 (a > b > 0).  (ảnh 1)

Với mỗi điểm M(x; y) (E) (Hình 9), tính:

a) Khoảng cách d(M, Δ1) từ điểm M(x; y) đến đường thẳng Δ1.

b) Tỉ số MF1dM,Δ1.

Xem đáp án » 20/07/2024 1.8 K

Câu 4:

Cho elip (E):x225+y29=1. Tìm toạ độ điểm M (E) sao cho độ dài F2M lớn nhất, biết F2 là một tiêu điểm có hoành độ dương của (E).

Xem đáp án » 23/07/2024 1.8 K

Câu 5:

Sử dụng đẳng thức c) ở trên và đẳng thức MF1 + MF2 = 2a, chứng minh:

a) MF1 – MF2 = 2cax;

b) MF1 = a + cax;

c) MF2 = a – cax.

Xem đáp án » 11/07/2024 1 K

Câu 6:

Vẽ elip(E):x225+y29=1.

Xem đáp án » 17/07/2024 501

Câu 7:

Tìm tâm sai của elip (E) trong mỗi trường hợp sau:

a) Độ dài bán trục lớn gấp hai lần độ dài bán trục bé;

b) Khoảng cách từ một đỉnh trên trục lớn đến một đỉnh trên trục bé bằng tiêu cự.

Xem đáp án » 26/06/2024 430

Câu 8:

Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trình chính tắc là x2a2+y2b2=1, trong đó a > b > 0. Cho điểm M(x; y) nằm trên (E) (Hình 3).

Trong mặt phẳng toạ độ Oxy, ta xét elip (E) có phương trình chính tắc (ảnh 1)

a) Gọi M1 là điểm đối xứng của M qua trục Ox. Tìm toạ độ của điểm M1. Điểm M1 có nằm trên (E) hay không? Tại sao?

b) Gọi M2 là điểm đối xứng của M qua trục Oy. Tìm toạ độ của điểm M2. Điểm M2 có nằm trên (E) hay không? Tại sao?

c) Gọi M3 là điểm đối xứng của M qua gốc O. Tìm toạ độ của điểm M3. Điểm M3 có nằm trên (E) hay không? Tại sao?

Xem đáp án » 01/07/2024 366

Câu 9:

Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho MF1 + MF2 = 2a, ở đó F1F2 = 2c với 0 < c < a. Ta chọn hệ trục tọa độ Oxy có gốc là trung điểm của đoạn thẳng F1F2. Trục Oy là đường trung trực của F1F2 và F2 nằm trên tia Ox (Hình 8).

Giả sử đường elip (E) là tập hợp các điểm M trong mặt phẳng sao cho MF1 + MF2 (ảnh 1)

Khi đó, F1(– c; 0), F2(c; 0) là các tiêu điểm của elip (E). Giả sử điểm M(x; y) thuộc elip (E). Chứng minh rằng:

a) MF12 = x2 + 2cx + c2 + y2;

b) MF22 = x2 – 2cx + c2 + y2;

c) MF12 – MF22 = 4cx.

Xem đáp án » 17/07/2024 337

Câu 10:

Trái Đất chuyển động quanh Mặt Trời theo một quỹ đạo là đường elip mà Mặt Trời là một tiêu điểm. Biết elip này có bán trục lớn a ≈ 149598261 km và tâm sai e ≈ 0,017. Tìm khoảng cách nhỏ nhất và lớn nhất giữa Trái Đất và Mặt Trời (kết quả được làm tròn đến hàng đơn vị).

Xem đáp án » 17/07/2024 268

Câu 11:

a) Nêu nhận xét về vị trí bốn đỉnh của elip (E) với bốn cạnh của hình chữ nhật cơ sở.

b) Cho điểm M(x; y) thuộc elip (E). Tìm giá trị nhỏ nhất và lớn nhất của x và của y.

Xem đáp án » 23/07/2024 266

Câu 12:

Viết phương trình chính tắc của elip (E), biết tiêu cự bằng 12 và tâm sai bằng 35.

Xem đáp án » 04/07/2024 265

Câu 13:

Viết phương trình chính tắc của elip, biết tiêu điểm F2(5; 0) và đường chuẩn ứng với tiêu điểm đó là x = 365.

Xem đáp án » 14/07/2024 259

Câu 14:

Cho elip (E) có phương trình chính tắc là x2a2+y2b2=1 (a > b > 0). Xét đường tròn (C) tâm O bán kính a có phương trình là x2 + y2 = a2.

Xét điểm M(x; y)(E) và điểm M1(x; y1)(C) sao cho y và y1 luôn cùng dấu (khi M khác với hai đỉnh A1, A2 của (E)) (Hình 10).

Cho elip (E) có phương trình chính tắc là x^2/a^2 + y^2/b^2 = 1 (a > b > 0). (ảnh 1)

a) Từ phương trình chính tắc của elip (E), hãy tính y2 theo x2.

Từ phương trình của đường tròn (C), hãy tính y12 theo x2.

b) Tính tỉ số HMHM1=yy1 theo a và b.

Xem đáp án » 19/07/2024 215