Cho tam giác ABC có AB = c, AC = b, BC = a. Kẻ đường cao BH.
a) Tính BH theo c và sin A.
b) Tính diện tích S của tam giác ABC theo b, c, và sin A.
a) Xét các trường hợp:
+ Với
Xét tam giác vuông AHB, ta có: BH = AB . sin A = c sin A.
+ Với
Khi đó, BH = BA = c = c sin A.
+ Với
Xét tam giác AHB vuông, ta có: .
Do đó BH = AB . sin(180° – ) = AB . sin A = c sin A.
Như vậy, trong mọi trường hợp ta đều có BH = c sin A.
b) Ta có: .
Cho tam giác ABC có BC = 12, CA = 15, . Tính:
a) Độ dài cạnh AB;
b) Số đo các góc A, B;
c) Diện tích tam giác ABC.
Cho tam giác ABC có AB = c, AC = b, BC = a. Viết công thức tính cos A theo a, b, c.
Một người đi dọc bờ biển từ vị trí A đến vị trí B và quan sát một ngọn hải đăng. Góc nghiêng của phương quan sát từ các vị trí A, B tới ngọn hải đăng với đường đi của người quan sát là 45° và 75°. Biết khoảng cách giữa hai bị trí A, B là 30 m (Hình 32). Ngọn hải đăng cách bờ biển bao nhiêu mét (làm tròn kết quả đến hàng đơn vị)?
Cho tam giác ABC có AB = 12, AC = 15, BC = 20. Tính:
a) Số đo các góc A, B, C;
b) Diện tích tam giác ABC.
Cho tam giác ABC có AB = 100, , . Tính:
a) Độ dài các cạnh AC, BC;
b) Diện tích tam giác ABC.
Từ trên nóc của một tòa nhà cao 18,5 m, bạn Nam quan sát một cái cây cách tòa nhà 30 m và dùng giác kế đo được góc lệch giữa phương quan sát gốc cây và phương nằm ngang là 34°, góc lệch giữa phương quan sát ngọn cây và phương nằm ngang là 24°. Biết chiều cao của chân giác kế là 1,5 m. Chiều cao của cái cây là bao nhiêu mét (làm tròn kết quả đến hàng phần mười)?
Cho tam giác ABC có AB = c, AC = b, . Viết công thức tính BC theo b, c, α.
Để tính khoảng cách giữa hai địa điểm A và B mà không thể đi trực tiếp từ A đến B (hai địa điểm nằm ở hai bên bờ một hồ nước, một đầm lầy, …), người ta tiến hành như sau: Chọn một địa điểm C sao cho ta đo được các khoảng cách AC, CB và góc ACB. Sau khi đo, ta nhận được: AC = 1 km, CB = 800 m và (Hình 31). Tính khoảng cách AB (làm tròn kết quả đến hàng phần mười theo đơn vị mét).
Từ xa xưa, con người đã cần đo đạc các khoảng cách mà không thể trực tiếp đo được. Chẳng hạn, để do khoảng cách từ vị trí A trên bờ biển tới một hòn đảo (hay con tàu,…) trên biển, người xưa đã tìm ra một cách đo khoảng cách đó như sau:
Từ vị trí A, đo góc nghiêng α so với bờ biển tới một vị trí C quan sát được trên đảo. Sau đó di chuyển dọc bờ biển đến vị trí B cách A một khoảng d và tiếp tục đo góc nghiêng β so với bờ biển tới vị trí C đã chọn (Hình 18). Bằng cách giải tam giác BAC, họ tính được khoảng cách AC.
Giải tam giác được hiểu như thế nào?
Cho tam giác ABC có BC = a, CA = b, AB = c và diện tích S (Hình 24).
a) Từ định lí côsin, chứng tỏ rằng:
, ở đó .
b) Bằng cách sử dụng công thức , hãy chứng tỏ rằng:
.