Cho bất phương trình 2x – y > 2 (3).
a) Trong mặt phẳng tọa độ Oxy, vẽ đường thẳng d: 2x – y = 2 ⇔ y = 2x – 2.
b) Xét điểm M(2; – 1). Chứng tỏ (2; – 1) là nghiệm của bất phương trình (3).
c) Đường thẳng d chia mặt phẳng tọa độ thành hai nửa mặt phẳng. Gạch đi nửa mặt phẳng không chứa điểm M(2; – 1).
a) Đường thẳng d: y = 2x – 2
Cho x = 0 thì y = – 2
Cho y = 0 thì x = 1
Do đó, đường thẳng d đi qua hai điểm (0; – 2) và (1; 0). Ta vẽ đường thẳng d như sau:
b) Xét điểm M(2; – 1).
Thay x = 2 và y = – 1 vào bất phương trình (3) ta được: 2 . 2 – (– 1) > 2 ⇔ 5 > 2 (luôn đúng).
Vậy (2; – 1) là nghiệm của bất phương trình (3).
c) Ta vẽ như hình dưới:
Miềm nghiệm của bất phương trình (3) là nửa mặt phẳng không bị gạch trong hình trên.
Phần không gạch (không kể d) ở mỗi Hình 7a, 7b, 7c là miền nghiệm của bất phương trình nào?
Biểu diễn miền nghiệm của mỗi bất phương trình sau:
a) x + 2y < 3;
b) 3x – 4y ≥ – 3;
c) y ≥ – 2x + 4;
d) y < 1 – 2x.
Tìm bất phương trình bậc nhất hai ẩn trong các bất phương trình sau và chỉ ra một nghiệm của bất phương trình bậc nhất hai ẩn đó:
a) 5x + 3y < 20;
b) 3x – > 2.
Trong 1 lạng (100 g) thịt bò chứa khoảng 26 g protein, 1 lạng cá rô phi chứa khoảng 20 g protein. Trung bình mỗi ngày, một người phụ nữ cần tối thiểu 46 g protein. (Nguồn: https://vinmec.com và https://thanhnien.vn) Gọi x, y lần lượt là số lạng thịt bò và số lạng cá rô phi mà một người phụ nữ nên ăn trong một ngày. Viết bất phương trình bậc nhất hai ẩn x, y để biểu diễn lượng protein cần thiết cho một người phụ nữ trong một ngày và chỉ ra ba nghiệm của bất phương trình đó.
Cặp số nào sau đây là nghiệm của bất phương trình 2x – 3y < 3?
a) (0; – 1);
b) (2; 1);
c) (3; 1).
Trong mặt phẳng tọa độ Oxy, xác định các điểm M(x; y) mà:
a) x > 0 (1);
b) y < 1 (2).
Một gian hàng trưng bày bàn và ghế rộng 60 m2. Diện tích để kê một chiếc ghế là 0,5 m2, một chiếc bàn là 1,2 m2. Gọi x là số chiếc ghế, y là số chiếc bàn được kê.
a) Viết bất phương trình bậc nhất hai ẩn x, y cho phần mặt sàn để kê bàn và ghế biết diện tích mặt sàn dành cho lưu thông tối thiểu là 12m2.
b) Chỉ ra ba nghiệm của bất phương trình trên.
Nhân dịp Tết Trung thu, một doanh nghiệp dự định sản xuất hai loại bánh: bánh nướng và bánh dẻo. Lượng đường cần cho mỗi chiếc bánh nướng, bánh dẻo lần lượt là 60 g, 50 g. Doanh nghiệp đã nhập về 500 kg đường.
Số bánh nướng và số bánh dẻo doanh nghiệp dự định sản xuất cần thỏa mãn điều kiện ràng buộc gì để lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về?
Trong bài toán ở phần mở đầu, ta gọi x, y lần lượt là số bánh nướng và số bánh dẻo doanh nghiệp dự định sản xuất (x, y là số tự nhiên). Nêu điều kiện ràng buộc đối với x và y để lượng đường sản xuất bánh không vượt quá lượng đường đã nhập về.
Biểu diễn miền nghiệm của mỗi bất phương trình sau:
a) x – 2y < 4;
b) x + 3y ≤ 6.