c) Vẽ đồ thị của hàm số F = F(C) trên đoạn [–10; 40].
c)
Dựa vào bảng phần b, ta có đồ thị hàm số F = F(C) trên đoạn [–10; 40] là đoạn thẳng đi qua 6 điểm (–10; 14), (0; 32), (10; 50), (20; 68), (30; 86), (40; 104).
Để đổi nhiệt độ từ thang Celsius sang thang Fahrenheit, ta nhân nhiệt độ theo thang Celsius với sau đó cộng với 32.
a) Viết công thức tính nhiệt độ F ở thang Fahrenheit theo nhiệt độ C ở thang Celsius. Như vậy ta có F là một hàm số của C.
Cho bảng các giá trị tương ứng của hai đại lượng x và y. Đại lượng y có là hàm số của đại lượng x không ? Nếu có, hãy tìm tập xác định và tập giá trị của hàm số đó.
a)
x |
–5 |
–3 |
–1 |
0 |
1 |
2 |
5 |
8 |
9 |
y |
–6 |
–8 |
–4 |
1 |
3 |
2 |
3 |
12 |
15 |
Vẽ đồ thị của các hàm số sau và chỉ ra tập giá trị, các khoảng đồng biến, nghịch biến của chúng.
a) ;
b) Gọi x là lượng nước đã sử dụng (đơn vị m3) và y là số tiền phải trả tương ứng (đơn vị VND). Hãy viết công thức mô tả sự phụ thuộc của y vào x.
Xét hai đại lượng x, y phụ thuộc vào nhau theo các hệ thức dưới đây. Những trường hợp nào thì y là một hàm số của x ?
a) x2 + y = 4;
Bảng sau đây cho biết giá nước sinh hoạt (chưa tính thuế VAT) của hộ dân cư theo mức sử dụng.
STT |
Mức sử dụng nước sinh hoạt của hộ dân cư (m3/tháng/hộ) |
STT Giá nước (VND/m3) |
1 |
10 m3 đầu tiên |
5 973 |
2 |
Từ trên 10 m3 đến 20 m3 |
7 052 |
3 |
Từ trên 20 m3 đến 30 m3 |
8 669 |
4 |
Trên 30 m3 |
15 929 |
(Theo hdđt.nshn.com. vn)
a) Hãy tính số tiền phải trả ứng với mỗi lượng nước sử dụng ở bảng sau:
Lượng nước sử dụng (m3) |
10 |
20 |
30 |
40 |
Số tiền (VND) |
|
|
|
|
Giá phòng của một khách sạn là 750 nghìn đồng một ngày cho hai ngày đầu tiên và 500 nghìn đồng cho mỗi ngày tiếp theo. Tổng số tiền T phải trả là một hàm số của số ngày x mà khách ở tại khách sạn.
a) Viết công thức của hàm số T = T(x).
Trong một cuộc thi chạy 100 m, có ba học sinh dự thi. Biểu đồ trên Hình 6.9 mô tả quãng đường chạy được y (m) theo thời gian t (s) của mỗi học sinh.
a) Đường biểu diễn quãng đường chạy được của mỗi học sinh có là đồ thị hàm số hay không?
b) Tính T(2), T(5), T(7) và cho biết ý nghĩa của mỗi giá trị này.
c) Căn cứ vào đồ thị vẽ được, hãy xác định vị trí và thời điểm ô tô đuổi kịp xe máy.
Có hai địa điểm A, B cùng nằm trên một tuyến quốc lộ thẳng. Khoảng cách giữa A và B là 20 km. Một xe máy xuất phát từ A lúc 6 giờ và chạy với vận tốc 40 km/h theo chiều từ A đến B. Một ô tô xuất phát từ B lúc 8 giờ và chạy với vận tốc 80 km/h theo cùng chiều với xe máy. Coi chuyển động của xe máy và ô tô là thẳng đều. Chọn A làm mốc, chọn thời điểm 6 giờ làm mốc thời gian và chọn chiều từ A đến B làm chiều dương. Khi đó toạ độ của xe máy và ô tô sẽ là những hàm số của biến thời gian.
a) Viết phương trình chuyển động của xe máy và ô tô (tức là công thức của hàm toạ độ theo thời gian).