Biểu diễn miền nghiệm của mỗi hệ bất phương trình sau :
a)
b)
c)
a) Hệ bất phương trình
Biểu diễn miền nghiệm của từng bất phương trình trên mặt phẳng Oxy.
- Xác định miền nghiệm D1 của bất phương trình x + y - 3 ≥ 0:
Lấy điểm O(0; 0) không thuộc đường thẳng d: x + y – 3 = 0, ta có: 0 + 0 – 3 = -3 < 0. Do đó miền nghiệm của bất phương trình x + y - 3 ≥ 0 là nửa mặt phẳng có bờ là đường thẳng d1 (kể cả đường thẳng d1) và không chứa gốc tọa độ O(0; 0) (như hình 5)
- Xác định miền nghiệm D2 của bất phương trình x ≥ 0 là nửa mặt phẳng bên phải trục Oy và kể cả bờ Oy (như hình 5).
- Xác định miền nghiệm D3 của bất phương trình y ≥ 0 là nửa mặt phẳng bên trên trục Ox và kể cả bờ Ox (như hình 5).
Vậy, miền không tô màu (bao gồm cả các bờ) trong hình 5 là phần giao của các miền nghiệm và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
b) Hệ bất phương trình
- Xác định miền nghiệm D1 của bất phương trình x - 2y < 0:
Lấy điểm A(0; 1) không thuộc đường thẳng d1: x – 2y = 0, ta có: 0 – 2.1 = -2 < 0. Do đó miền nghiệm D1 là nửa mặt phẳng có bờ là đường thẳng d1 (không kể đường thẳng d1) và chứa điểm A (0; 1) (như hình 6).
- Xác định miền nghiệm D2 của bất phương trình x + 3y > -2:
Lấy điểm O(0; 0) không thuộc đường thẳng d2: x + 3y = - 2, ta có: 0 + 3.0 = 0 > - 2. Do đó miền nghiệm D2 là nửa mặt phẳng bờ là đường thẳng d2 (không kể đường thẳng d2) và chứa gốc tọa độ O (như hình 6).
- Xác định miền nghiệm D3 của bất phương trình y – x < 3:
Lấy điểm O(0; 0) không thuộc đường thẳng d2: x + 3y = - 2, ta có: 0 + 3.0 = 0 > - 2.
Miền nghiệm của bất phương trình y – x < 3 là nửa mặt phẳng bờ là đường thẳng y – x = 3 (không kể bờ) và chứa gốc tọa độ O (như hình 6)
Vậy, miền không tô màu (không bao gồm cả các bờ) trong hình 6 là phần giao các miền nghiệm của các bất phương trình trong hệ và cũng là phần biểu diễn miền nghiệm của hệ bất phương trình đã cho.
c) Hệ bất phương trình
Biểu diễn miền nghiệm của từng bất phương trình trên mặt phẳng Oxy.
- Miền nghiệm của bất phương trình x ≥ 1 là nửa mặt phẳng kể cả bờ x = 1 và không chứa gốc tọa độ O (như hình 7)
- Miền nghiệm của bất phương trình x ≤ 4 là nửa mặt phẳng kể cả bờ x = 4 và chứa gốc tọa độ O (như hình 7).
- Miền nghiệm của bất phương trình x + y – 5 ≤ 0 là nửa mặt phẳng kể cả bờ x + y – 5 = 0 và chứa gốc tọa độ O (như hình 7).
- Miền nghiệm của bất phương trình y ≥ 0 là nửa mặt phẳng bên trên trục Ox và kể cả bờ Ox (như hình 7).
Bạn Lan thu xếp được không quá 10 giờ để làm hai loại đèn trung thu tặng cho các trẻ em khuyết tật. Loại đèn hình con cá cần 2 giờ để làm xong 1 cái, còn loại đèn ông sao chỉ cần 1 giờ để làm xong 1 cái. Gọi x, y lần lượt là số đèn hình con cá và đèn ông sao bạn Lan sẽ làm. Hãy lập hệ bất phương trình mô tả điều kiện của x, y và biểu diễn miền nghiệm của hệ bất phương trình đó.
Một người bán nước giải khát đang có 24 g bột cam, 9 l nước và 210 g đường để pha chế hai loại nước cam A và B. Để pha chế 1 l nước cam loại A cần 30 g đường, 1 l nước và 1 g bột cam; để pha chế 1 l nước cam loại B cần 10 g đường, 1 l nước và 4 g bột cam. Mỗi lít nước cam loại A bán được 60 nghìn đồng, mỗi lít nước cam loại B bán được 80 nghìn đồng. Người đó nên pha chế bao nhiêu lít nước cam mỗi loại để có doanh thu cao nhất ?
Một người nông dân dự định quy hoạch x sào đất trồng cà tím và y sào đất trồng cà chua. Biết rằng người đó chỉ có tối đa 9 triệu đồng để mua hạt giống và giá tiền hạt giống cho mỗi sào đất trồng cà tím là 200 000 đồng, mỗi sào đất trồng cà chua là 100 000 đồng.
a) Viết các bất phương trình mô tả các điều kiện ràng buộc đối với x, y.
b) Cặp số nào sau đây thỏa mãn đồng thời tất cả các bất phương trình nêu trên?
(20; 40), (40; 20), (-30; 10).
Một học sinh dự định vẽ các tấm thiệp xuân bằng tay để bàn trong một hội chợ Tết. Cần 2 giờ để vẽ một tấm thiệp loại nhỏ có giá 10 nghìn đồng và 3 giờ để vẽ một tấm thiệp lớn có giá 20 nghìn đồng. Học sinh này chỉ có 30 giờ để vẽ và ban tổ chức hội chợ yêu cầu phải vẽ ít nhất 12 tấm. Hãy cho biết bạn ấy cần vẽ bao nhiêu tấm thiệp mỗi loại để có được nhiều tiền nhất.
Trong một tuần, bạn Mạnh có thể thu xếp được tối đa 12 giờ để tập thể dục giảm cân bằng hai môn : đạp xe và tập cử tạ tại phòng tập. Cho biết mỗi giờ đạp xe sẽ tiêu hao 350 calo và không tốn chi phí, mỗi giờ tập cử tạ sẽ tiêu hao 700 calo với chi phí 50 000 đồng/giờ. Mạnh muốn tiêu hao nhiều calo nhưng không được vượt quá 7 000 calo một tuần. Hãy giúp bạn Mạnh tính số giờ đạp xe và số giờ tập tạ một tuần trong hai trường hợp sau :
a) Mạnh muốn chi phí tập luyện là ít nhất.
b) Mạnh muốn số calo tiêu hao là lớn nhất.
Một nhà máy sản xuất hai loại thuốc trừ sâu nông nghiệp là A và B. Cứ sản xuất mỗi thùng loại A thì nhà máy thải ra 0,25 kg khí cacbon dioxide (CO2) và 0,60 kg khí sulffur dioxide (SO2), sản xuất mỗi thùng loại B thì thải ra 0,50 kg CO2 và 0,20 kg SO2. Biết rằng, quy định hạn chế sản lượng (CO2) của nhà máy tối đa là 75 kg và SO2 tối đa là 90 kg mỗi ngày.
a) Tìm hệ bất phương trình mô tả số thùng của mỗi loại thuốc trừ sâu mà nhà máy có thể sản xuất mỗi ngày để đáp ứng các điều kiện hạn chế trên. Biểu diễn miền nghiệm của hệ bất phương trình đó trên mặt phẳng tọa độ.
b) Việc nhà máy sản xuất 100 thùng loại A và 80 thùng loại B mỗi ngày có phù hợp với quy định không ?
c) Việc nhà máy sản xuất 60 thùng loại A và 160 thùng loại B mỗi ngày có phù hợp với quy định không ?
Cho hệ bất phương trình .
Miền nào trong Hình 1 biểu diễn phần giao các miền nghiệm của hai bất phương trình trong hệ đã cho ?
Hai đường thẳng d: y = – x – 2 và d’: y = x + 1 chia mặt phẳng tọa độ thành bốn miền khác nhau (không tính hai đường thẳng d và d’) như hình vẽ bên. Để kí hiệu một trong bốn miền đó, người ta đã tạo nhãn:
Hãy đặt nhãn này vào miền phù hợp.