Chuyên đề Phương trình mũ 2022 hay, chọn lọc

Tailieumoi.vn xin giới thiệu chuyên đề Phương trình mũ thuộc chương trình Toán 12. Chuyên đề gồm 10 trang với đầy đủ lý thuyết, phương pháp giải các dạng bài tập và trên 200 bài tập có lời giải chi tiết từ cơ bản đến nâng cao giúp học sinh ôn luyện kiến thức, nâng cao kĩ năng làm bài tập môn Toán 12.

Chuyên đề Phương trình mũ

Phần 1: 6 dạng bài tập Phương trình mũ trong đề thi Đại học có lời giải

Dạng 1. Giải phương trình mũ cơ bản

1. Phương pháp giải

Cho phương trình af(x) = b ( a > 0 và a ≠ 1)

+ Nếu b le; 0 thì phương trình đã cho vô nghiệm .

+ Nếu b > 0 thì phương trình đã cho tương đương f(x)= logab .

Dạng 2. Đưa về cùng cơ số

1. Phương pháp giải

af(x) = ag(x) ⇔ a = 1 hoặc .

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Dạng 3. Đặt ẩn phụ

1. Phương pháp giải

f[ag(x)] = 0 (0 < a ≠ 1) Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Ta thường gặp các dạng:

● m.a2f(x) + n.af(x) + p = 0 ta đặt t = a f(x) ( t > 0 ).

Khi đó, phương trình đã cho có dạng m.t2 + nt + p= 0 .

● m.af(x) + n.bf()x) + p = 0, trong đó ab = 1. Đặt t = af(x),( t> 0);suy ra

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

● m.a2f(x) + n. (ab)f(x) + p.b2f(x) = 0. Chia hai vế cho b2f(x) và đặt Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng).

• Phương trình dạng Aa3x + m + Ba2x + n + Cax + p + D = 0

+ Ta biến đổi Aam.(ax)3 + Ban.(ax)2 + Capax + D = 0

Coi đây là phương trình bậc hai ẩn t= ax ,(t > 0 ), ta bấm máy tính tìm nghiệm và đối chiếu với điều kiện.

+ Lưu ý biến dạng a2x = (a2)x, a3x = (a3)x và ta có thể biến x thành một hàm f(x)

Dạng 4. Phương trình tích

1. Phương pháp giải

Để giải phương trình mũ ta có thể dùng các phương pháp phân tích biểu thức thành nhân tử; đưa về phương trình tích.

Sau đó, áp dụng phương pháp logarit hóa; phương pháp đưa về cùng cơ số...

Dạng 5. Sử dụng tính đơn điệu của hàm số và phương pháp đánh giá.

1. Phương pháp giải

o Tính chất 1. Nếu hàm số y = f(x) luôn đồng biến (hoặc luôn nghịch biến) trên (a; b) thì số nghiệm của phương trình f(x) = 0 trên (a; b) không nhiều hơn một và f(u) = f( v) ⇔ u = v ∀u,v ∈ (a; b)

o Tính chất 2. Nếu hàm số y = f(x) liên tục và luôn đồng biến (hoặc luôn nghịch biến) ; hàm số y = g(x) liên tục và luôn nghịch biến (hoặc luôn đồng biến) trên D thì số nghiệm trên D của phương trình f(x) = g(x) không nhiều hơn một.

o Tính chất 3. Nếu hàm số y =f(x) luôn đồng biến (hoặc luôn nghịch biến) trên D thì bất phương trình f(u) > f(v) ⇔ u > v ( hoặc u < v).

Dạng 6. Bài toán tìm tham số m thỏa mãn điều kiện T.

2. Ví dụ minh họa

Ví dụ 1. Với giá trị nào của tham số m thì phương trình (2 + √3)x + (2 − √3)x = m vô nghiệm?

A. m ≤ 2    B . m > 2    C. m = 2    D. m < 2

Đáp án: D

Nhận xét: (2 + √3) + (2 − √3) = 1 ⇔ (2 + √3)x + (2 − √3)x = 1 .

Đặt t = (2 + √3)x.

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Khi đó, phương trình đã cho trở thành:

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng) Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Xét hàm số Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng) xác định và liên tục trên (0; +∞).

Ta có:

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Cho

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Bảng biến thiên:

Bài tập Phương trình mũ trong đề thi Đại học có lời giải (6 dạng)

Dựa vào bảng biến thiên, nếu m < 2 thì phương trình (1’) vô nghiệm nên phương trình (1) vô nghiệm.

Phần 2: Phương pháp đưa về cùng cơ số và phương pháp lôgarit hóa

A. Phương pháp giải & Ví dụ

1. Phương trình mũ cơ bản.

    Phương trình mũ cơ bản có dạng: ax = m        (1).

        Nếu m > 0 thì phương trình (1) có nghiệm duy nhất x = logam.

        Nếu m ≤ 0 thì phương trình (1) vô nghiệm.

2. Phương pháp đưa về cùng cơ số.

    Với a > 0 và a ≠ 1 ta có af(x) = ag(x) ⇔ f(x) = g(x).

3. Phương pháp lôgarit hoá.

        af(x) = b ⇔ f(x) = logab

        af(x) = bg(x) ⇔ f(x) = g(x)logab

        logaf(x) = b ⇔ f(x) = ab

Ví dụ minh họa

Bài 1: Giải phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Giải phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Giải phương trình sau

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phần 3: Phương pháp đặt ẩn phụ trong phương trình mũ

A. Phương pháp giải & Ví dụ

    Ta thường sử dụng 1 ẩn phụ để chuyển phương trình ban đầu thành 1 phương trình với 1 ẩn phụ.

Các phép đặt ẩn phụ thường gặp sau:

Dạng 1: Phương trình αk + αk-1 a(k-1)x + ... + α1 ax + α0 = 0

        Khi đó ta đặt t = ax điều kiện t > 0, ta được αk tk + αk-1 tk-1 + ... + α1 t + α0 = 0

        Mở rộng: Nếu đặt t = af(x) , điều kiện hẹp t > 0.

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dạng 2: Phương trình α1 ax + α2 ax + α3 = 0 với a.b = 1

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

        Mở rộng: Với a.b = 1 thì khi đặt t = af(x), điều kiện hẹp t > 0, suy ra Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dạng 3: Phương trình α1 a2x + α2 (a.b)x + α3 b2x = 0 khi đó chia hai vế của phương trình cho b2x > 0 (hoặc a2x, (a.b)x), điều kiện t < 0, ta được

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

        Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải, điều kiện t < 0 , ta được α1 t2 + α2 t+α3 = 0

        Mở rộng: Với phương trình mũ có chứa các nhân tử: a2f, b2f, (a.b)2f, ta thực hiện theo các bước sau:

            + Chia 2 vế của phương trình cho b2f > 0 (hoặc a2f,(a.b)f)

            + Đặt Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải điều kiện hẹp t > 0

Ví dụ minh họa

Bài 1: Giải phương trình 9x-5.3x+6=0

Hướng dẫn:

Đặt t=3x (t > 0), khi đó phương trình đã cho tương đương với

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 2: Giải phương trình sau: (7+4√3)x-3(2-√3)x+2=0

Hướng dẫn:

Nhận xét rằng 7+4√3=(2+√3)2; (2+√3)(2-√3)=1

Do đó nếu đặt t=(2+√3)x điều kiện t > 0 thì (2-√3)x=1/t và (7+4√3)x = t2

Khi đó phương trình đã cho tương đương với

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy phương trình có nghiệm x=0

Bài 3: Giải phương trình sau: (√2-1)x+(√2+1)x-2√2=0

Hướng dẫn:

Đặt t=(√2+1)x ta có phương trình đã cho tương đương:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 4: Giải phương trình sau: (3+√5)x+16(3-√5)x = 2x+3

Hướng dẫn:

Chia cả hai vế của phương trình cho 2x > 0, ta được

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phần 4: Sử dụng tính đơn điệu để giải phương trình mũ

A. Phương pháp giải & Ví dụ

Hướng 1:

    • Bước 1. Chuyển phương trình về dạng f(x)=k.

    • Bước 2. Khảo sát sự biến thiên của hàm số f(x) trên D. Khẳng định hàm số đơn điệu

    • Bước 3. Nhận xét:

        + Với x = x0 ⇔ f(x) = f(x0) = k do đó x = x0 là nghiệm.

        + Với x > x0 ⇔ f(x) > f(x0) = k do đó phương trình vô nghiệm.

        + Với x < x0 ⇔ f(x) < f(x0) = k do đó phương trình vô nghiệm.

    • Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.

Hướng 2:

    • Bước 1. Chuyển phương trình về dạng f(x) = g(x).

    • Bước 2. Khảo sát sự biến thiên của hàm số y = f(x) và y = g(x). Khẳng định hàm số y = f(x) là hàm số đồng biến còn y = g(x) là hàm số nghịch biến hoặc là hàm hằng.

    • Bước 3. Xác đinh x0 sao cho f(x0) = g(x0 .

    • Bước 4. Kết luận vậy x = x0 là nghiệm duy nhất của phương trình.

Hướng 3:

    • Bước 1. Chuyển phương trình về dạng f(u) = f(v).

    • Bước 2. Khảo sát sự biến thiên của hàm số y = f(x). Khẳng định hàm số đơn điệu.

    • Bước 3. Khi đó f(u) = f(v) ⇔ u = v.

Ví dụ minh họa

Bài 1: Giải phương trình x+2.3log2 x = 3 (*).

Hướng dẫn:

Ta có: (*) ⇔ 2.3log2x = 3-x (1).

Nhận xét:

    + Vế trái của phương trình là hàm số đồng biến.

    + Vế phải của phương trình là hàm số nghịch biến.

Do đó nếu phương trình có nghiệm thì nghiệm đó là nghiệm duy nhất.

Mặt khác: x = 1 là nghiệm của phương trình. Phương trình có nghiệm duy nhất x = 1.

Vậy tập nghiệm của phương trình là: S={1}.

Bài 2: Giải phương trình

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ x2 - 3x + 2 = u2 ⇒ 3x - x2 - 1 = 1 - u2.

Khi đó phương trình (*) có dạng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Xét hàm số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

    + Miền xác định: D = [0;+∞).

    + Đạo hàm Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ∀x ∈ D. Suy ra hàm số đồng biến trên D.

Mặt khác f(1) = log3 (1+2) + (1/5).5 = 2.

Do đó, phương trình (1) được viết dưới dạng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Giải phương trình 2x2-x + 93-2x + x2 + 6 = 42x-3 + 3x - x2 + 5x (*).

Hướng dẫn:

Ta có: (*) ⇔ 2x2-x + 36-4x + x2 + 6 = 24x-6 + 3x-x2 + 5x.

        ⇔ 2x2-x + x2 - x - 3x-x2 = 24x-6 + 4x - 6 - 36-4x.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

ta được 2u + u - 3-u = 2v + v - 3-v.

Xét hàm số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ f'(t) là hàm số đồng biến trên R, mà f(u)=f(v) ⇔ u=v.

Ta có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vậy tập nghiệm của phương trình là: S={1;6}.

Tài liệu có 10 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống

Đánh giá

0

0 đánh giá

Tải xuống