Chuyên đề Phương trình mặt cầu 2022 hay, chọn lọc

Tailieumoi.vn xin giới thiệu chuyên đề Phương trình mặt cầu thuộc chương trình Toán 12. Chuyên đề gồm 66 trang với đầy đủ lý thuyết, phương pháp giải các dạng bài tập và trên 200 bài tập có lời giải chi tiết từ cơ bản đến nâng cao giúp học sinh ôn luyện kiến thức, nâng cao kĩ năng làm bài tập môn Toán 12.

Chuyên đề Phương trình mặt cầu

Phần 1: 4 dạng bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải

Dạng 1: Xác định tâm và bán kính mặt cầu – Điều kiện để một phương trình là phương trình một mặt cầu.

1. Phương pháp giải

● Xét phương trình (S): (x- a)2 + ( y- b)2 + ( z- c)2 = R2.

Khi đó mặt cầu có tâm I (a; b;c), bán kính R

● Xét phương trình (S): x2 + y2 + z2 – 2ax – 2by – 2cz + d = 0.

Điểu kiện để phương trình trên là phương trình mặt cầu là: a2 + b2 + c2 – d > 0

Khi đó mặt cầu có Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

2. Ví dụ minh họa

Ví dụ 1: Mặt cầu (S): 3x2 + 3y2 + 3z2 - 6x + 12y + 2 = 0 có bán kính bằng:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Hướng dẫn giải:

Ta có (S): 3x2 + 3y2 + 3z2 – 6x +12y +2 = 0

⇔ x2 + y2 + z2 - 2x + 4y + 2/3 = 0

Đây là phương trình đường tròn có tâm I( 1; -2; 0), bán kính Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng) .

Chọn D.

Ví dụ 2: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 +z2 + 2x - 4y + 6z – 2= 0 . Tính tọa độ tâm I và bán kính R của (S).

A.Tâm I( -1; 2; -3) và bán kính R=4.    B. Tâm I( 1; -2; 3) và bán kính R = 4.

C.Tâm I(-1; 2; 3) và bán kính R= 4.    D. Tâm I(1; -2; 3) và bán kính R= 16.

Hướng dẫn giải:

Phương trình mặt cầu (S): x2 + y2 + z2 + 2x - 4y + 6z – 2 = 0 có:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Chọn A.

Ví dụ 3: Cho phương trình (S): x2 + y2 + z2 + 2( 3 – m)x – 2( m+ 1)y – 2mz + 2m2 + 7 = 0 . Tìm tất cả giá trị của m để ( S) là một phương trình mặt cầu.

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Hướng dẫn giải:

Ta có: a= m - 3 ; b = m + 1; c = m và d= 2m2 + 7

Điều kiện để ( S) là mặt cầu là a2 + b2 + c2 - d > 0

⇔ ( m- 3)2 + ( m+1)2 + m2 – 2m2 - 7 > 0 hay m2 – 4m + 3 > 0

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Chọn C.

Ví dụ 4: Trong không gian với hệ tọa độ Oxyz, cho mặt cầu (S) có phương trình: x2 + y2 + z2 – (2m - 2) x + 3my + ( 6m – 2)z – 7= 0 . Gọi R là bán kính của (S) , giá trị nhỏ nhất của R bằng:

A. 7    B. √377/7    C. √377    D. √377/4

Hướng dẫn giải:

Ta có (S): x2 + y2 + z2 - ( 2m – 2)x + 3my + ( 6m -2) z – 7 = 0

hay Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Suy ra bán kính

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Dạng 2: Lập phương trình mặt cầu biết tâm và bán kính .

1. Phương pháp giải

+ Mặt cầu có đường kính AB: Tâm I là trung điểm của AB và bán kính R = AB/2 .

Lập phương trình mặt cầu đi qua bốn điểm A, B, C, D không đồng phẳng

Cách 1:

+ Bước 1: Gọi phương trình mặt cầu là x2 + y2 + z2 – 2ax – 2by - 2cz + d = 0 ( *)

(với a2 + b2 + c2 – d > 0 )

+ Bước 2: Thay tọa độ bốn điểm A, B, C, D vào phương trình (*), ta được hệ 4 phương trình.

+ Bước 3: Giải hệ trên tìm được a, b, c, d( chú ý đối chiếu điều kiện a2 + b2 + c2 – d > 0 ).

Thay a, b, c, d vào (*) ta được phương trình mặt cầu cần lập.

Cách 2:

+ Bước 1: Gọi I(a, b, c) là tâm mặt cầu đi qua bốn điểm A, B, C, D

Suy ra: Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

+ Bước 2: Giải hệ trên để tìm a, b, c.

+ Bước 3: Tìm bán kính R = IA.

Từ đó, viết phương trình mặt cầu cần tìm có dạng (x- a)2 + ( y – b)2 + ( z - c)2 = R2

2. Ví dụ minh họa

Ví dụ 1: Cho hai điểm A( -2; 1; 0) và B( 2;3 ; -2). Phương trình mặt cầu đường kính AB là:

A. (x + 2)2 + ( y -1)2 + ( z+ 1)2 = 8    B. x2 +( y +2)2 + ( z- 1)2 = 10

C. x2 + ( y - 2)2 + ( z+ 1)2 = 6    D. (x – 2)2 + (y +1)2 + (z -1)2 = 8

Hướng dẫn giải:

Gọi M là trung điểm của AB, tọa độ điểm M là :

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Độ dài MA là : Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Mặt cầu cần tìm nhận M(0; 2; -1) làm tâm và có bán kính là R= MA = √6.

Ta có phương trình mặt cầu là : (x - 0)2 + ( y - 2)2 + ( z+ 1)2 = 6

Hay x2 + ( y -2)2 + (z +1)2 = 6

Chọn C.

Ví dụ 2: Nếu mặt cầu (S) đi qua bốn điểm M(2; 2;2); N( 4; 0; 2); P( 4; 2; 0) và Q(4;2;2) thì tâm I của (S) có toạ độ là:

A. (-1;-1; 0)    B. (3; 1; 1)    C. (1; 1; 1)    D. (1; 2;1)

Hướng dẫn giải:

Gọi phương trình mặt cầu (S): x2 + y2 + z2 - 2ax – 2by – 2cz + d= 0 ( a2 + b2 + c2 - d > 0) .

Do M(2;2;2) ∈ (S) 22 + 22 + 22 – 2.2a- 2.2b – 2.2c + d = 0 hay – 4a – 4b – 4c + d= -12 (1)

Do N( 4; 0; 2) ∈ (S) nên 42 + 02 + 22 - 2.4a- 2.0b - 2.2c + d = 0 hay – 8a – 4c + d= - 20 (2)

Do P(4; 2; 0) ∈ (S) nên 42 + 22 + 02 – 2.4a - 2.2b - 2.0.c + d = 0 hay – 8a – 4b + d = -20 (3)

Do Q(4; 2; 2) ∈ (S) nên 42 + 22 + 22 - 2.4 a -2.2b – 2.2c + d = 0 hay – 8a – 4b – 4c + d = -24 (4)

Từ (1); (2); (3) và (4) ta có hệ phương trình:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Suy ra, mặt cầu (S) thỏa mãn có tâm I(1; 2; 1)

Chọn A.

Ví dụ 3: Mặt cầu (S) tâm I( -1; 2; -3) và tiếp xúc với mặt phẳng (P): x+ 2y + 2z + 6 = 0có phương trình:

A. (x- 1)2 +( y+2)2 + (z- 3)2 = 2    B. (x+ 1)2 + ( y – 2)2 + (z + 3)2 = 4

C. (x+ 1)2 + (y -2)2 + (z + 3)2 =1    D. (x+1)2 + ( y - 2)2 +(z + 3)2 = 25

Hướng dẫn giải:

Khoảng cách từ tâm I đến mặt phẳng (P) là:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên d( I; (P)) = R = 1

Suy ra, phương trình mặt cầu cần tìm là:

(x+1)2 + (y - 2)2 + (z + 3)2 = 1

Chọn C.

Ví dụ 4: Cho các điểm A(-2; 4; 1); B(2; 0; 3) và đường thẳng Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng) . Gọi (S) là mặt cầu đi qua A; B và có tâm thuộc đường thẳng d. Bán kính mặt cầu (S) bằng:

A. 3√3    B. √6    C.3.    D.2√3

Hướng dẫn giải:

Tâm I ∈d => I(1+t;1+2t;-2+t) .

=> AI(3+t;-3+2t;-3+t); BI(-1+t;1+2t;-5+t)

Vì (S) đi qua A và B nên ta có IA = IB => IA2 = IB2

⇔ (3+ t)2 + (-3+ 2t)2 + ( -3+ t)2 = ( -1+ t)2 + (1+ 2t)2 + (- 5+ t)2

⇔ 9+ 6t + t2 + 9 – 12t + 4t2 + 9 – 6t + t2 = 1- 2t+ t2 + 1+ 4t + 4t2 + 25 - 10t + t2

⇔ 6t2 - 12t + 27 = 6t2 – 8t + 27

⇔ -4t = 0 nên t = 0

=> AI(3 ; -3 ; -3) nên AI = 3√3

Vậy bán kính mặt cầu (S) là R = AI = 3√3

Chọn A.

Ví dụ 5: Cho đường thẳng Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng) và hai mặt phẳng (P): x+ 2y + 2z+3 = 0, (Q): x+ 2y + 2z + 7 = 0. Mặt cầu (S) có tâm I thuộc đường thẳng d và tiếp xúc với hai mặt phẳng (P) và (Q) có phương trình

A. (x+ 3)2 + (y+1)2 + (z - 3)2 = 4/9 .    B. (x- 3)2 +(y - 1)2 + (z+ 3)2 = 4/9 .

C. (x+3)2 +(y+ 1)2 +(z+3)2 = 4/9 .     D. (x-3)2 +( y+1)2 + (z+ 3)2 = 4/9 .

Hướng dẫn giải:

Do tâm I ∈ d nên I(t; -1; - t)

Mà mặt cầu (S) tiếp xúc với hai mặt phẳng (P) và (Q) nên ta có:

R= d(I; (P)) = d(I; (Q))

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

⇔ | -t+ 1| = | -t + 5|

⇔ t2 – 2t +1= t2 – 10t + 25

⇔8t = 24 nên t = 3.

Với t= 3,ta có tâm I (3; -1; -3) và bán kính R= d( I; (P))= Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Phương trình mặt cầu là (x-3)2 + ( y+1)2 + (z+ 3)2 = 4/9

Chọn D.

Dạng 3. Viết phương trình mặt cầu biết tâm I, một đường thẳng ( mặt phẳng) cắt mặt cầu thỏa mãn điều kiện T.

1. Phương pháp giải

* Phương trình mặt cầu (S) biết tâm I và cắt đường thẳng d theo dây cung AB

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

• Bước 1: Tính khoảng cách từ tâm I đến đường thẳng d

• Bước 2: Dựa vào giả thuyết đề cho, ta tính độ dài dây cung AB. Suy ra độ dài AH (với H là trung điểm AB)

• Bước 3: Tính IA theo định lý Pitago cho tam giác vuông AIH. Suy ra bán kính R= IA.

* Phương trình mặt cầu (S) biết tâm I và cắt mặt phẳng (P) theo đường tròn giao tuyến (C)

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

• Bước 1: Tính khoảng cách từ tâm I đến mặt phẳng (P)

• Bước 2: Dựa vào giả thuyết đề cho, ta tính bán kính r của đường tròn giao tuyến. Suy ra bán kính mặt cầu Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

2. Ví dụ minh họa

Ví dụ 1: Phương trình mặt cầu (S) có tâm I(2; 3; -1) và cắt đường thẳng Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng) tại hai điểm A, B với AB = 16.

A.( x- 2)2 + ( y- 3)2 +(z + 1)2 = 76 .    B. (x-2)2 + (y - 3)2 + (z+ 1)2 = 46 .

C. (x- 2)2 +( y - 3)2 + (z+ 1)2 = 56.    D. ( x- 2)2 +( y – 3)2 + (z+1)2 = 66

Hướng dẫn giải:

Chọn M(-1; 1; 0) ∈ Δ => IM(-3; -2; 1) . Đường thẳng Δ có một VTCP là u(1; -4; 1).

Ta có: [IMu] = (2; 4; 14)

Từ đó, khoảng cách từ I đến Δ là :

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Gọi H là trung điểm của AB ta có: AH= HB= AB/2 = 8

Gọi R là bán kính mặt cầu (S). Khi đó Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do đó, phương trình mặt cầu là: ( x- 2)2 +( y – 3)2 + (z+ 1)2 = 76

(S): ( x- 2)2 +( y – 3)2 + (z+ 1)2 = 76 .

Chọn A.

Ví dụ 2: Cho hai mặt phẳng (P): 5x – 4y + z - 6 = 0; (Q): 2x - y+ z +7 = 0 và đường thẳng Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng) . Viết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một hình tròn có diện tích là 20π .

A.( x-1)2 + y2 +( z+1)2 = 110/3 .    B. (x- 1)2 + y2 + (z -1)2 = 110/3

C.(x- 1)2 + y2 +( z- 1)2 = 110/3 .    D. (x- 1)2 + y2 + (z - 1)2 = 110.

Hướng dẫn giải:

Phương trình tham số của đường thẳng ∆: Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do tâm I là giao điểm của đường thẳng ∆ và (P) nên tọa độ I là nghiệm của hệ phương trình:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Thay (1), (2), (3) vào (4) ta có: 5(1+7t) – 4. 3t + (1 – 2t) – 6 =0

⇔ 21t = 0 ⇔ t= 0

Khi đó, tọa độ điểm I(1 ; 0 ; 1).

Khoảng cách từ điểm I đến mặt phẳng (Q) là :

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:

20π = πr2 ⇔ r = 2√5

Gọi R là bán kính mặt cầu (S) cần tìm.

Theo giả thiết: Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Vậy phương trình mặt cầu ( S) cần tìm là: (x- 1)2 + y2+ (z-1)2 = 110/3

Chọn B.

Ví dụ 3: Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(0; -1; 0); B(1; 1; -1) và mặt cầu (S): x2 + y2 + z2 – 2x + 4y – 2z – 3 = 0. Mặt phẳng (P) đi qua A, B và cắt mặt cầu (S) theo giao tuyến là đường tròn có bán kính lớn nhất có phương trình là

A. x- 2y + 3z – 2 = 0.    B. x - 2y – 3z – 2= 0.

C. x+ 2y – 3z - 6 = 0    D. 2x- y – 2 = 0.

Hướng dẫn giải:

Để (P) cắt (S) theo giao tuyến là đường tròn có bán kính lớn nhất thì (P) phải qua tâm I(1; -2; 1)của (S).

Ta có AI(1; -1; 1); BI(0; -3; 2)

Một vecto pháp tuyến của mặt phẳng (P) là:

n = [AIBI] = (1; -2; -3).

Mặt phẳng (P) đi qua A( 0; -1;0) và nhận vecto n(1; -2; -3) làm VTPT nên có phương trình:

1( x- 0) – 2( y+1) – 3( z- 0) = 0 hay x- 2y - 3z – 2= 0

Chọn B.

Ví dụ 4: Trong không gian Oxyz, cho điểm M(2; 1; 1), mặt phẳng ( α): x+ y + z – 4 = 0 và mặt cầu (S): x2 + y2 + z2 – 6x – 6y – 8z+ 18 = 0. Phương trình đường thẳng Δ đi qua M và nằm trong (α) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất là:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Hướng dẫn giải:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Mặt cầu (S) có tâm I(3; 3;4) và bán kính R= 4.

Khoảng cách từ tâm I đến mặt phẳng (α) là: Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Suy ra mặt cầu (S) cắt mặt phẳng (α) theo một đường tròn.

Ta có điểm M ∈ (α) < ; IM = √14 < R nên điểm M nằm trong mặt cầu (S).

Gọi H là hình chiếu vuông góc của I lên (P) => H(1; 1;2)

Để đường thẳng Δ đi qua M và nằm trong (α) cắt mặt cầu (S) theo một đoạn thẳng có độ dài nhỏ nhất thì Δ ⊥MH .

Từ đó suy ra Δ có véctơ chỉ phương là: u = [nαMH] = (1; -2; 1)

Vậy phương trình Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Chọn B.

Dạng 4: Lập phương trình mặt cầu tiếp xúc với đường thẳng, mặt phẳng và thỏa mãn điều kiện T

1. Ví dụ minh họa

Ví dụ 1: Cho điểm A(2; 5; 1) và mặt phẳng (P): 6x + 3y – 2z + 24= 0, H là hình chiếu vuông góc của A trên mặt phẳng (P). Phương trình mặt cầu (S) có diện tích và tiếp xúc với mặt phẳng (P) tại H, sao cho điểm A nằm trong mặt cầu là:

A. (x- 8)2 + ( y- 8)2 + (z+ 1)2 = 196    B. (x + 82 +(y+ 8)2 + (z - 1)2 = 196

C. (x + 16)2 + ( y+4)2 + (z- 7)2 = 196    D.(x- 16)2+ ( y- 4)2 +(z+ 7)2 = 196

Hướng dẫn giải:

Gọi d là đường thẳng đi qua A và vuông góc với (P). Suy ra, một VTCP của d là:

ud = nP( 6; 3; -2)

Phương trình đường thẳng d là Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Vì H là hình chiếu vuông góc của A trên (P) nên H= d ∩ (P) .

Vì H ∈ d nên H( 2+ 6t; 5+ 3t; 1- 2t.

Mặt khác, H ∈ (P) nên ta có:

6(2+ 6t) + 3(5+ 3t) – 2( 1- 2t) + 24 = 0

⇔ t= - 1

Do đó, H( -4; 2; 3).

Gọi I và R lần lượt là tâm và bán kính mặt cầu.

Theo giả thiết diện tích mặt cầu bằng 784π , suy ra 4πR2 ⇔ R = 14 .

Vì mặt cầu tiếp xúc với mặt phẳng (P) tại H nên IH⊥ (P) => I ∈ d .

Do đó tọa độ điểm I có dạng I( 2+ 6t; 5+ 3t; 1- 2t), với t ≠ -1 .

Theo giả thiết, tọa độ điểm I thỏa mãn:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do đó: I(8; 8; -1).

Vậy phương trình mặt cầu (S): (x- 8)2 +( y – 8)2 + (z+1)2 = 196.

Chọn A.

Ví dụ 2: Cho mặt phẳng (P): x+ 2y – 2z + 2= 0 và điểm A(2; -3; 0). Gọi B là điểm thuộc tia Oy sao cho mặt cầu tâm B, tiếp xúc với mặt phẳng (P) có bán kính bằng 2. Tọa độ điểm B là:

A. (0; 1; 0)    B.(0; -4; 0)    C.(0; 2; 0) hoặc (0; -4; 0)    D. (0; 2; 0)

Hướng dẫn giải:

Vì B thuộc tia Oy nên B(0; b; 0) (với b > 0)

Bán kính của mặt cầu tâm B, tiếp xúc với (P) là R= d(B; (P))= |2b+2|/3 .

Theo giả thiết R= 2 nên:

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do b > 0 nên chọn b= 2.

Vậy tọa độ B(0; 2; 0).

Chọn D.

Ví dụ 3: Cho hai mặt phẳng (P): 2x+ 3y – z + 2 = 0; (Q): 2x - y – z +2 = 0. Phương trình mặt cầu (S) tiếp xúc với mặt phẳng (P) tại điểm A(1; -1;1) và có tâm thuộc mặt phẳng (Q) là:

A. (x+ 3)2 + (y+ 7)2 + (z – 3)2 = 56    B. (x-3)2 + ( y- 7)2 + (z+ 3)2 = 56

C. ( x+3)2 + ( y+ 7)2 +( z - 3)2 = 14    D. (x- 3)2 +( y- 7)2+ ( z+ 3)2 = 14

Hướng dẫn giải:

Gọi d đường thẳng đi qua A và vuông góc với (P). Nên 1 VTCP của d là: ud = nP(2; 3; -1).

Ta có; phương trình đường thẳng d là: Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Tâm I ∈ d nên I( 1+ 2t; -1+ 3t; 1- t).

Do điểm I nằm trên mp (Q) nên ta có:

2( 1+ 2t) - ( -1+ 3t ) – (1 – t) + 2 = 0

⇔t = - 2 nên I ( -3; -7; 3)

Bán kính mặt cầu là R= IA = Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Phương trình mặt cầu (S): ( x+3)2 +(y+ 7)2 + (z- 3)2 = 56

Chọn A.

Ví dụ 4: Cho hai mặt phẳng (P);(Q) có phương trình (P): x- 2y + z - 1= 0 và (Q): 2x + y – z + 3 = 0 . Mặt cầu có tâm nằm trên mặt phẳng (P) và tiếp xúc với mặt phẳng (Q) tại điểm M, biết rằng M thuộc mặt phẳng (Oxy) và có hoành độ xM = 1 có phương trình là:

A.(x - 21)2 + ( y - 5)2 + ( z + 10)2 = 600    B. (x+19)2 + ( y+ 15)2 + (z - 10)2 = 600

C. (x- 21)2 + (y - 5)2 + (z + 10)2 = 100    D. (x+ 21)2 + ( y+ 5)2 + (z - 10)2 = 600

Hướng dẫn giải:

Vì M ∈ (Oxy) và có hoành độ bằng 1 nên M(1; y ; 0).

Lại có, mặt cầu tiếp xúc với mặt phẳng (Q) nên M ∈ Q

=> 2.1 + y - 0+ 3 = 0 => y = -5

Tọa độ điểm M(1; -5; 0).

Gọi I(a; b; c) là tâm của mặt cầu (S) cần tìm.

Ta có (S) tiếp xúc với mp (Q) tại M nên IM⊥(Q) .

Mặt phẳng (Q) có vectơ pháp tuyến n(2; 1; -1).

Ta có: IM⊥(Q)

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Do I ∈ (P) nên 1+ 2t – 2( - 5+ t) - t – 1 = 0

⇔ t = 10 nên I(21; 5; -10)

Bán kính mặt cầu R= d(I; (Q)) = 10√6

Vậy phương trình mặt cầu (S): ( x- 21)2 + ( y- 5)2 + ( z +10)2 = 600.

Chọn A.

Ví dụ 5: Cho hai điểm M(1;0;4); N(1; 1; 2) và mặt cầu (S): x2 + y2 + z2 – 2x + 2y – 2= 0 . Mặt phẳng (P) qua M; N và tiếp xúc với mặt cầu (S) có phương trình:

A. 4x + 2y + z - 8 = 0 hoặc 4x – 2y – z + 8= 0

B. 2x + 2y +z – 6= 0 hoặc 2x – 2y – z + 2= 0

C. 2 x+ 2y + z – 6 = 0

D. 2x – 2y – z + 2 = 0

Hướng dẫn giải:

- Ta có mặt cầu (S) có tâm I(1; -1; 0) và bán kính R= 2; MN(0; 1; -2)

- Gọi n(A;B;C) với A2 + B2 + C2 > 0 là một vectơ pháp tuyến của mặt phẳng (P).

- Vì (P) qua M, N nên n⊥ MN => n.MN = 0

⇔ B - 2C = 0 (1)

- Mặt phẳng (P) qua M(1; 0; 4) và nhận ( A, B, C) là vectơ pháp tuyến nên có phương trình

A(x-1)+ B( y – 0) + C( z- 4) = 0 hay Ax + By +Cz – A - 4C =0.

- Mặt phẳng (P) tiếp xúc với (S) nên d(I ; (P)) = R

Bài tập Viết phương trình mặt cầu trong đề thi Đại học có lời giải (4 dạng)

Từ (1) và (2) => A2 - 4C2 = 0 (*)

- Trong (*), nếu C = 0 thì A= 0, và từ (1) suy ra B = 0 (vô lí). Do vậy, C ≠ 0

Chọn C=1 => A = ±2

Với A=2 ; C = 1, ta có B = 2 . Khi đó; (P); 2x + 2y + z - 6 = 0 .

Với A= -2; C= 1, ta có B= 2. Khi đó, (P): 2x – 2y – z + 2 = 0 .

- Vậy phương trình mặt phẳng (P):2x + 2y + z – 6= 0 hoặc (P): 2x – 2y – z + 2 = 0 .

Chọn B.

Phần 2: Tìm tâm và bán kính mặt cầu

A. Phương pháp giải & Ví dụ

+ Phương trình (S): (x-a)2+(y-b)2+(z-c)2=R2 là phương trình mặt cầu (S) có tâm I (a; b; c), bán kính R

+ Phương trình (S): x2+y2+z2-2ax-2by-2cz+d=0 thỏa mãn điều kiện a2+b2+c2-d>0 là phương trình mặt cầu tâm I (a; b; c); bán kính

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ví dụ minh họa

Bài 1: Trong không gian hệ trục tọa độ Oxyz, phương trình nào sau đây là phương trình mặt cầu, nếu là phương trình mặt cầu, hãy tìm tâm và bán kính của mặt cầu đó

a) (x-2)2+(y+3)2+z2=5

b) x2+y2+z2-2x+4y-6z+1=0

c) 3x2+3y2+3z2-6x+3y+21=0

Hướng dẫn:

a) Phương trình (x-2)2+(y+3)2+z2=5 có dạng

(x-a)2+(y-b)2+(z-c)2=R2 nên là phương trình mặt cầu có tâm

I (2; -3; 0) và bán kính R=√5.

b) Phương trình x2+y2+z2-2x+4y-6z+1=0 có dạng

x2+y2+z2-2ax-2by-2cz+d=0 với a = 1; b = -2; c = 3, d = 1

⇒ a2+b2+c2-d=13>0

Vậy phương trình đã cho là phương trình mặt cầu có tâm I (1; -2; 3) và bán kính R=√13.

c) Phương trình 3x2+3y2+3z2-6x+3y+21=0

⇔ x2+y2+z2-2x+y+7=0

Phương trình có dạng x2+y2+z2-2ax-2by-2cz+d=0 với

a=1;b=(-1)/2;c=0;d=7 ⇒a2+b2+c2-d=(-23)/4<0

Vậy phương trình đã cho không phải là phương trình mặt cầu.

Bài 2: Trong không gian với hệ tọa độ Oxyz, tìm m để mỗi phương trình sau là phương trình mặt cầu.

a) x2+y2+z2-2mx+2(m+1)y-4z+1=0

b) x2+y2+z2-2(m-3)x-4mz+8=0

Hướng dẫn:

a) Phương trình x2+y2+z2-2mx+2(m+1)y-4z+1=0 có

a=m;b=-(m+1); c=2;d=1.

Phương trình là phương trình mặt cầu ⇔ a2+b2+c2-d>0

⇔ m2+(m+1)2+22-1>0⇔2m2+2m+3>0 ⇔m∈R.

b) Phương trình x2+y2+z2-2(m-3)x-4mz+8=0 có a=m-3;

b=0;c=2m;d=8

Phương trình là phương trình mặt cầu ⇔a2+b2+c2-d>0

⇔(m-3)2+4m2-8>0 ⇔5m2-6m+1>0

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bài 3: Trong không gian hệ trục tọa độ Oxyz, tìm tất cả các giá trị thực của tham số m để phương trình x2+y2+z2+2(m+2)x-2(m-3)z+m2-1=0 là phương trình của mặt cầu có bán kính nhỏ nhất.

Hướng dẫn:

Phương trình x2+y2+z2+2(m+2)x-2(m-3)z+m2-1=0 có:

a=-(m+2);b=0;c=m-3;d=m2-1

Phương trình là phương trình mặt cầu ⇔ a2+b2+c2-d>0

⇔ (m+2)2+(m-3)2-m2+1>0 ⇔ m2-2m+14>0 ⇔ m∈R.

Khi đó, bán kính mặt cầu là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Dấu bằng xảy ra khi m = 1.

Vậy với m = 1 thì mặt cầu có bán kính nhỏ nhất R=√13.

Phần 3: Viết phương trình mặt cầu

Phương pháp giải

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.

Hướng dẫn:

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:

(S): (x-2)2+(y-3)2+(z+1)2=25.

Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)

Hướng dẫn:

Gọi I là trung điểm của AB

Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.

⇒ I(3; -1;5)

Bán kính mặt cầu là:

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 3

Vậy phương trình mặt cầu có đường kính AB là:

(x-3)2+(y+1)2+(z-5)2=9

Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2

Bài 3: Viết phương trình mặt cầu có tâm I (3; -2; 2) và đi qua A(-2; 0; -1)

Hướng dẫn:

Vì mặt cầu (S) đi qua A nên (S) có bán kính

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√38

Vậy phương trình mặt cầu có tâm I (3; -2; 2) và bàn kính R=√38 là:

(x-3)2+(y+2)2+(z-2)2=38

Chú ý: Để lập phương trình mặt cầu khi biết tâm I (a; b; c) và đi qua một điểm A cho trước thì ta tìm bán kính R = IA. Khi đó, phương trình mặt cầu (S) có dạng:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Viết phương trình mặt cầu có tâm tiếp xúc mặt phẳng

Phương pháp giải

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên khoảng cách từ tâm I đến mặt phẳng (P) bằng bán kính R

R=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với mặt phẳng (P): x + 2x + 2z – 5 = 0.

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 8/3

Do (P) tiếp xúc với mặt cầu (S) nên bán kính mặt cầu R=d(I;(P))=8/3

Khi đó, phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với (P) là:

(x-1)2+(y+2)2+z2=64/9

Bài 2: Viết phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy)

Hướng dẫn:

Phương trình mặt phẳng (Oxy) là: z = 0

Khoảng cách từ I đến mặt phẳng Oxy là:

d(I;(Oxy))=|-2|/√(12 )=2

Phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy) là:

(x-3)2+(y+1)2+(z+2)2=4

Bài 3: Cho 4 điểm A (3; -2; -2), B (3; 2; 0), C (0; 2; 1) và D (-1; 1; 2). Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD).

Hướng dẫn:

BC=(-3;0;1); BD=(-4; -1;2)

⇒ [BC , BD ]=(1;2;3)

⇒ Vecto pháp tuyến của mặt phẳng (BCD) là: n =(1;2;3)

Phương trình mặt phẳng (BCD) có VPPT n=(1;2;3) và đi qua điểm B(3; 2; 0) là: x-3+2(y-2)+3z=0

⇔ x+2y+3z-7=0

Khoảng cách từ A đến mặt phẳng (BCD) là:

d(A;(BCD))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14

Khi đó, phương trình mặt cầu tâm A và tiếp xúc với (BCD) là:

(x-3)2+(y+2)2+(z+2)2=14

Viết phương trình mặt cầu có tâm tiếp xúc đường thẳng

Phương pháp giải

Do mặt cầu (S) tiếp xúc với mặt phẳng (d) nên khoảng cách từ tâm I đến mặt phẳng (d) bằng bán kính R

Gọi M là điểm bất kì trên d, u là vecto chỉ phương của d. Khi đó, khoảng cách từ I đến d được tính theo công thức:

R=d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu tâm I (1; -2; 3) và tiếp xúc với trục Oy

Hướng dẫn:

Phương trình đường thẳng Oy là Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vecto chỉ phương của Oy là u =(0;1;0)

M (0; 1; 0) ∈ Oy ⇒ IM=(-1;3; -3)

⇒ [IM , u ]=(-3;0;1)

Khoảng cách từ I đến trục Oy là:

d(I;(Oy))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √10

Do mặt cầu tiếp xúc với trục Oy nên khoảng cách từ tâm I đến trục Oy là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+(y+2)2+(z-3)2=10

Bài 2: Cho điểm A ( -3; 1; 4) và đường thẳng d có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình mặt cầu tâm A, tiếp xúc với d là:

Hướng dẫn:

Đường thẳng d có VTCP u =(2; 1; -1) và đi qua điểm M (-1; 2; -3)

Ta có: AM=(2;1; -7)

AM , u ]=(6; -12;0)

Khoảng cách từ A đến đường thẳng d là:

d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √30

Do mặt cầu tiếp xúc với đường thẳng d nên khoảng cách từ tâm I đến trục d là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x+3)2+(y-1)2+(z-4)2=30

Phần 4: Viết phương trình mặt cầu có tâm I

Phương pháp giải

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.

Hướng dẫn:

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:

(S): (x-2)2+(y-3)2+(z+1)2=25.

Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)

Hướng dẫn:

Gọi I là trung điểm của AB

Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.

⇒ I(3; -1;5)

Bán kính mặt cầu là:

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 3

Vậy phương trình mặt cầu có đường kính AB là:

(x-3)2+(y+1)2+(z-5)2=9

Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2

Viết phương trình mặt cầu có tâm tiếp xúc mặt phẳng

Phương pháp giải

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên khoảng cách từ tâm I đến mặt phẳng (P) bằng bán kính R

R=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với mặt phẳng (P): x + 2x + 2z – 5 = 0.

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 8/3

Do (P) tiếp xúc với mặt cầu (S) nên bán kính mặt cầu R=d(I;(P))=8/3

Khi đó, phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với (P) là:

(x-1)2+(y+2)2+z2=64/9

Bài 2: Viết phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy)

Hướng dẫn:

Phương trình mặt phẳng (Oxy) là: z = 0

Khoảng cách từ I đến mặt phẳng Oxy là:

d(I;(Oxy))=|-2|/√(12 )=2

Phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy) là:

(x-3)2+(y+1)2+(z+2)2=4

Bài 3: Cho 4 điểm A (3; -2; -2), B (3; 2; 0), C (0; 2; 1) và D (-1; 1; 2). Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD).

Hướng dẫn:

BC=(-3;0;1); BD=(-4; -1;2)

⇒ [BC , BD ]=(1;2;3)

⇒ Vecto pháp tuyến của mặt phẳng (BCD) là: n =(1;2;3)

Phương trình mặt phẳng (BCD) có VPPT n=(1;2;3) và đi qua điểm B(3; 2; 0) là: x-3+2(y-2)+3z=0

⇔ x+2y+3z-7=0

Khoảng cách từ A đến mặt phẳng (BCD) là:

d(A;(BCD))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14

Khi đó, phương trình mặt cầu tâm A và tiếp xúc với (BCD) là:

(x-3)2+(y+2)2+(z+2)2=14

Viết phương trình mặt cầu tâm I cắt mặt phẳng theo đường tròn có bán kính R

Phương pháp giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khoảng cách từ tâm I đến mặt phẳng P là:

d=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bán kính R của mặt cầu được tính theo công thức:

R=√(r2+d2 )

Khi đó phương trình mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, cho mặt phẳng (P): 2x + y – 2z + 10 = 0 và điểm I (2; 1; 3). Phương trình mặt cầu (S) tâm I cắt mặt phẳng (P) theo một đường tròn (C) có bán kính bằng 4 là:

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bán kính R của mặt cầu là:

RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 5

Phương trình mặt cầu cần tìm là:

(x-2)2+(y-1)2+(z-3)2=25

Bài 2: Cho điểm A (1; 2; 4) và mặt phẳng (P): x + y + z =1. Viết phương trình mặt cầu (S) có tâm A, biết mặt cầu (S) cắt mặt phẳng (P) theo một thiết diện là một đường tròn có chu vi 4π

Hướng dẫn:

Gọi r là bán kính thiết diện

Theo bài ra, đường tròn thiết diện có chu vi 4π

⇒ 2πr = 4π ⇒ r=2

Phương trình mặt phẳng (P): x + y + z – 1 = 0

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 2√3

Gọi R là bán kính mặt cầu

⇒ R=√(r2+d2 )=4

Phương trình mặt cầu tâm I, bán kính R = 4 là:

(x-1)2+(y-2)2+(z-4)2=16

Bài 3: Cho hai mặt phẳng (P): 5x – 4y + z – 6 = 0, (Q): 2x – y + z + 7 = 0 và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một đường tròn có diện tích là 20π.

Hướng dẫn:

I là giao điểm của (P) và Δ

I thuộc Δ nên I (1+7t; 3t; 1 – 2t)

Lại có I thuộc (P) nên:

5(1+7t) -4.3t+1 -2t-6=0 ⇔ t=0

⇒ I(1;0;1)

Khoảng cách từ I đến mặt phẳng (Q) là:

d(I;(Q))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= (5√6)/3

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:

πr2 =20π ⇒ r=2√5

Gọi R là bán kính mặt cầu, ta có:

⇒ R=√(r2 +d2 )Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √(330)/3

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+y2+(z-1)2=110/3

Phần 5: Viết phương trình mặt cầu biết tâm I (a; b; c) và bán kính R

Phương pháp giải

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5.

Hướng dẫn:

Phương trình chính tắc của mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Khi đó, phương trình mặt cầu có tâm I (2; 3; -1) và có bán kính R = 5 là:

(S): (x-2)2+(y-3)2+(z+1)2=25.

Bài 2: Viết phương trình mặt cầu có đường kính AB với A (4; -3; 7), B(2; 1; 3)

Hướng dẫn:

Gọi I là trung điểm của AB

Do AB là đường kính của mặt cầu I là tâm mặt của mặt cầu.

⇒ I(3; -1;5)

Bán kính mặt cầu là:

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 3

Vậy phương trình mặt cầu có đường kính AB là:

(x-3)2+(y+1)2+(z-5)2=9

Chú ý: Để lập phương trình mặt cầu nhận AB là đường kính thì ta tìm tâm I là trung điểm của AB và bán kính R=AB/2

Bài 3: Viết phương trình mặt cầu có tâm I (3; -2; 2) và đi qua A(-2; 0; -1)

Hướng dẫn:

Vì mặt cầu (S) đi qua A nên (S) có bán kính

R=IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√38

Vậy phương trình mặt cầu có tâm I (3; -2; 2) và bàn kính R=√38 là:

(x-3)2+(y+2)2+(z-2)2=38

Chú ý: Để lập phương trình mặt cầu khi biết tâm I (a; b; c) và đi qua một điểm A cho trước thì ta tìm bán kính R = IA. Khi đó, phương trình mặt cầu (S) có dạng:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Bài 4: Cho đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải và điểm A (5; 4; -2). Viết phương trình mặt cầu đi qua điểm A và có tâm là giao điểm của d với mặt phẳng (Oxy)

Hướng dẫn:

Mặt phẳng (Oxy): z = 0

Gọi I là giao điểm của d và mặt phẳng Oxy

Do I∈d nên I (t; 1 + 2t; -1-t)

I thuộc mặt phẳng (Oxy) nên -1-t=0 ⇔ t=-1

⇒ I(-1; -1;0)

IACác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √65

Phương trình mặt cầu đi qua A và có tâm I (-1; -1; 0) là

(x+1)2+(y+1)2+ z2=65

Phần 6: Viết phương trình mặt cầu biết tâm I (a; b; c) và mặt cầu tiếp xúc với mặt phẳng (P): Ax + By + Cz + D = 0

Do mặt cầu (S) tiếp xúc với mặt phẳng (P) nên khoảng cách từ tâm I đến mặt phẳng (P) bằng bán kính R

R=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với mặt phẳng (P): x + 2x + 2z – 5 = 0.

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 8/3

Do (P) tiếp xúc với mặt cầu (S) nên bán kính mặt cầu R=d(I;(P))=8/3

Khi đó, phương trình mặt cầu có tâm I (1; -2; 0) và tiếp xúc với (P) là:

(x-1)2+(y+2)2+z2=64/9

Bài 2: Viết phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy)

Hướng dẫn:

Phương trình mặt phẳng (Oxy) là: z = 0

Khoảng cách từ I đến mặt phẳng Oxy là:

d(I;(Oxy))=|-2|/√(12 )=2

Phương trình mặt cầu có tâm I (3; -1; -2) và tiếp xúc với mặt phẳng (Oxy) là:

(x-3)2+(y+1)2+(z+2)2=4

Bài 3: Cho 4 điểm A (3; -2; -2), B (3; 2; 0), C (0; 2; 1) và D (-1; 1; 2). Viết phương trình mặt cầu tâm A và tiếp xúc với mặt phẳng (BCD).

Hướng dẫn:

BC=(-3;0;1); BD=(-4; -1;2)

⇒ [BC , BD ]=(1;2;3)

⇒ Vecto pháp tuyến của mặt phẳng (BCD) là: n =(1;2;3)

Phương trình mặt phẳng (BCD) có VPPT n=(1;2;3) và đi qua điểm B(3; 2; 0) là: x-3+2(y-2)+3z=0

⇔ x+2y+3z-7=0

Khoảng cách từ A đến mặt phẳng (BCD) là:

d(A;(BCD))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14

Khi đó, phương trình mặt cầu tâm A và tiếp xúc với (BCD) là:

(x-3)2+(y+2)2+(z+2)2=14

Bài 4: Cho mặt phẳng ( P ): 2x + 3y + z - 2 = 0. Mặt cầu (S) có tâm I thuộc trục Oz, bán kính bằng 2/√(14) và tiếp xúc mặt phẳng (P) có phương trình:

Hướng dẫn:

Tâm I thuộc trục Oz nên I (0; 0; c)

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt phẳng (P) tiếp xúc với mặt cầu nên khoảng cách từ I đến mặt phẳng (P) bằng bán kính của mặt cầu.

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, tồn tại 2 điểm I thỏa mãn là (0; 0; 2) và (0; 0; 0)

Vậy phương trình mặt cầu cần tìm là:

x2 +y2 +z2=2/7

x2 +y2 +(z-2)2=2/7

Phần 7: Viết phương trình mặt cầu biết tâm I (a; b; c) và tiếp xúc với đường thẳng

Phương pháp giải

Do mặt cầu (S) tiếp xúc với mặt phẳng (d) nên khoảng cách từ tâm I đến mặt phẳng (d) bằng bán kính R

Gọi M là điểm bất kì trên d, u là vecto chỉ phương của d. Khi đó, khoảng cách từ I đến d được tính theo công thức:

R=d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khi đó, phương trình mặt cầu cần tìm là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu tâm I (1; -2; 3) và tiếp xúc với trục Oy

Hướng dẫn:

Phương trình đường thẳng Oy là Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Vecto chỉ phương của Oy là u =(0;1;0)

M (0; 1; 0) ∈ Oy ⇒ IM=(-1;3; -3)

⇒ [IM , u ]=(-3;0;1)

Khoảng cách từ I đến trục Oy là:

d(I;(Oy))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √10

Do mặt cầu tiếp xúc với trục Oy nên khoảng cách từ tâm I đến trục Oy là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+(y+2)2+(z-3)2=10

Bài 2: Cho điểm A ( -3; 1; 4) và đường thẳng d có phương trình:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình mặt cầu tâm A, tiếp xúc với d là:

Hướng dẫn:

Đường thẳng d có VTCP u =(2; 1; -1) và đi qua điểm M (-1; 2; -3)

Ta có: AM=(2;1; -7)

AM , u ]=(6; -12;0)

Khoảng cách từ A đến đường thẳng d là:

d(I;(d))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √30

Do mặt cầu tiếp xúc với đường thẳng d nên khoảng cách từ tâm I đến trục d là bán kính của mặt cầu.

Vậy phương trình mặt cầu cần tìm là:

(x+3)2+(y-1)2+(z-4)2=30

Bài 3: Cho điểm I (0; 1; 2); B (-1; 1; 0) và C (2; -3; 1). Viết phương trình mặt cầu có tâm I và tiếp xúc với đường thẳng BC

Hướng dẫn:

Đường thẳng BC có VTCP BC=(3;-4; 1)

IB=(-1;0; -4)

[IB ; BC ]=(16;11; -4)

Khoảng cách từ I đến đường thẳng BC là:

d(I;BC)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Do mặt cầu tiếp xúc với đường thẳng BC nên khoảng cách từ I đến đường thẳng BC là bán kính mặt cầu tâm I

Vậy phương trình mặt cầu cần tìm là:

x2+(y-1)2+(z-2)2=393/26

Phần 8: Viết phương trình mặt cầu biết I (a; b; c) và mặt cầu cắt mặt phẳng (P): Ax + By + Cz + D = 0 theo một đường tròn có bán kính r

Phương pháp giải

 

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Khoảng cách từ tâm I đến mặt phẳng P là:

d=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bán kính R của mặt cầu được tính theo công thức:

R=√(r2+d2 )

Khi đó phương trình mặt cầu có tâm I (a; b; c) và bán kính R là:

(S): (x-a)2+(y-b)2+(z-c)2=R2

Ví dụ minh họa

Bài 1: Trong không gian Oxyz, cho mặt phẳng (P): 2x + y – 2z + 10 = 0 và điểm I (2; 1; 3). Phương trình mặt cầu (S) tâm I cắt mặt phẳng (P) theo một đường tròn (C) có bán kính bằng 4 là:

Hướng dẫn:

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Bán kính R của mặt cầu là:

RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 5

Phương trình mặt cầu cần tìm là:

(x-2)2+(y-1)2+(z-3)2=25

Bài 2: Cho điểm A (1; 2; 4) và mặt phẳng (P): x + y + z =1. Viết phương trình mặt cầu (S) có tâm A, biết mặt cầu (S) cắt mặt phẳng (P) theo một thiết diện là một đường tròn có chu vi 4π

Hướng dẫn:

Gọi r là bán kính thiết diện

Theo bài ra, đường tròn thiết diện có chu vi 4π

⇒ 2πr = 4π ⇒ r=2

Phương trình mặt phẳng (P): x + y + z – 1 = 0

Khoảng cách từ I đến mặt phẳng (P) là:

d(I;P)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 2√3

Gọi R là bán kính mặt cầu

⇒ R=√(r2+d2 )=4

Phương trình mặt cầu tâm I, bán kính R = 4 là:

(x-1)2+(y-2)2+(z-4)2=16

Bài 3: Cho hai mặt phẳng (P): 5x – 4y + z – 6 = 0, (Q): 2x – y + z + 7 = 0 và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu (S) có tâm I là giao điểm của (P) và Δ sao cho (Q) cắt (S) theo một đường tròn có diện tích là 20π.

Hướng dẫn:

I là giao điểm của (P) và Δ

I thuộc Δ nên I (1+7t; 3t; 1 – 2t)

Lại có I thuộc (P) nên:

5(1+7t) -4.3t+1 -2t-6=0 ⇔ t=0

⇒ I(1;0;1)

Khoảng cách từ I đến mặt phẳng (Q) là:

d(I;(Q))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= (5√6)/3

Gọi r là bán kính đường tròn giao tuyến của (S) và mặt phẳng (Q). Ta có:

πr2 =20π ⇒ r=2√5

Gọi R là bán kính mặt cầu, ta có:

⇒ R=√(r2 +d2 )Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √(330)/3

Vậy phương trình mặt cầu cần tìm là:

(x-1)2+y2+(z-1)2=110/3

Phần 9: Viết phương trình mặt cầu biết I (a; b; c) và mặt cầu cắt đường thẳng Δ theo một dây cung có độ dài l cho trước

Phương pháp giải

 

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

 

Độ dài dây cung l=AB

 

+ Khoảng cách từ I đến đường thẳng Δ là:

 

d=d(I;(Δ))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

 

trong đó M là điểm thuộc Δ, u là VTCP của ∆

 

+ Gọi R là bán kính của mặt cầu

 

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

 

Ví dụ minh họa

Bài 1: Viết phương trình mặt cầu (S) có tâm I (2; 3; -1) và cắt đường thẳng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

tại 2 điểm A, B với AB = 16

Hướng dẫn:

Chọn M (-1; 1; 0) ∈ Δ

⇒ IM=(3;2; 1)

Đường thẳng Δ có một vecto chỉ phương là u=(1; -4;1)

Ta có: [IM ; u ]=(2;4;14)

⇒ d(I,Δ)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 2√3

Gọi R là bán kính mặt cầu

Ta có:

RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= 2√(19)

Vậy phương trình mặt cầu là:

(x-2)2+(y-3)2+(z+1)2=76

Bài 2: Cho điểm I (0; 0; 3) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB vuông

Hướng dẫn:

Điểm M (-1; 0; 2) ∈d

⇒ IM=(-1;0; -1)

Đường thẳng Δ có một vecto chỉ phương là u=(1; 2;1)

Ta có: [IM ; u ]=(2;0;-2)

⇒ d(I,Δ)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Do tam giác IAB cân tại I nên IAB sẽ vuông cân tại I có IA=R

⇒ AB= R√2

Ta có:

RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ R2=8/3

Phương trình mặt cầu cần tìm là:

x2 +y2+ (z-3)2=8/3

Bài 3: Cho điểm I (1; 0; 0) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại hai điểm A, B sao cho tam giác IAB đều:

Hướng dẫn:

Điểm M (1; 1; -2) ∈d

⇒ IM=(0;1; -2)

Đường thẳng Δ có một vecto chỉ phương là u=(1; 2;1)

Ta có: [IM ; u ]=(5;-2;-1)

⇒ d(I,Δ)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Tam giác IAB đều cạnh R

⇒ AB=R

Ta có:

RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ R2 =20/3

Phương trình mặt cầu cần tìm là:

(x-1)2 +y2 +z2=20/3

Bài 4: Cho điểm I (1; 1; -2) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu (S) có tâm I và cắt đường thẳng d tại 2 điểm A, B sao cho IABˆ=300

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi H là chân đường vuông góc của I trên AB

Xét tam giác AHI vuông tại H, AI = R có:

IH=AI.sin⁡(IABˆ)=R.sin⁡(300)=R/2

Điểm M (-1; 3; 2) ∈d

⇒ IM=(-2;2; 4)

Đường thẳng Δ có một vecto chỉ phương là u=(1; 2;1)

Ta có: [IM ; u ]=(-6;6;-6)

⇒ d(I,Δ)Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có: IH = d(I,Δ)

⇒ R/2=3√2 ⇒ R=6√2

Vậy phương trình mặt cầu cần tìm là:

(x-1)2 +(y-1)2 +(z+2)2=72

Bài 5: Viết phương trình mặt cầu có tâm I (3; 6; -4) và cắt trục Oz tại 2 điểm A, B sao cho diện tích tam giác IAB bằng 6√5

Hướng dẫn:

Phương trình đường thẳng Oz là : Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Điểm O(0; 0; 0) thuộc Oz ⇒ OI=(3;6; -4)

Một vecto chỉ phương của Oz là u= (0; 0; 1)

⇒ [OI ; u ]=(6; -3;0)

Khoảng cách từ I đến trục Oz là:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Ta có: SIAB=1/2 IH .AB=1/2 .3√5 .AB=6√5 ⇒ AB=4

Gọi R là bán kính mặt cầu

⇒ R2=Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải+d2=22+45=49

Vậy phương trình mặt cầu cần tìm là:

(x-3)2 +(y-6)2 +(z+4)2=49

Phần 10: Viết phương trình mặt cầu có tâm thuộc đường thẳng d và đi qua 2 điểm A, B

Phương pháp giải

Viết phương trình đường thẳng d về dạng tham số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)

Mặt cầu đi qua 2 điểm A, B cho trước nên IA = IB

⇒ IA2= IB2

⇒ Tìm được t

⇒ Tọa độ tâm và bán kính ⇒ Phương trình mặt cầu

Ví dụ minh họa

Bài 1: Cho các điểm A (1; 3; 1); B(3; 2; 2). Viết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc trục Oz

Hướng dẫn:

Do tâm I thuộc trục Oz nên I (0; 0; z)

IA2 =12 +32 +(z-1)2

IB2=32 +22+(z-2)2

Do mặt cầu đi qua 2 điểm A, B nên IA = IB

⇒ IA2= IB2

⇒ 12 +32 +(z-1)2=32 +22+(z-2)2

⇔ 2z=6 ⇔ z=3

⇒ I (0; 0; 3); R2 =IA2 =14

Vậy phương trình mặt cầu cần tìm là:

x2 +y2 +(z-3)2 =14

Bài 2: Cho các điểm A (0; 1; 3) và B (2; 2; 1) và đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiViết phương trình mặt cầu đi qua hai điểm A, B và tâm thuộc đường thẳng d

Hướng dẫn:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Phương trình tham số của Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi I là tâm của mặt cầu, do I thuộc d nên I (1+2t; 2 – t; 3 – 2t)

Ta có: IA2= (1+2t)2+(2-t-1)2+(3-2t-3)2=9t2+2t+2

IB2= (1+2t-2)2 +(2-t-2)2 +(3-2t-1)2= 9t2 -4t+5

Do mặt cầu đi qua 2 điểm A, B nên IA = IB

⇒ IA2= IB2

⇒9t2+ 2t +2= 9t2 -4t+5

⇔ t=1/2

⇒ I(2; 3/2;2); R2= IA2=21/4

Vậy phương trình mặt cầu cần tìm là

(x-2)2 +(y-3/2)2 +(z-2)2 =21/4

Viết phương trình mặt cầu có tâm thuộc đường đẳng d và cắt mặt phẳng P

Dạng bài: Mặt cầu có tâm thuộc d, cắt mặt phẳng (P) theo giao tuyến là đường tròn có bán kính r và tâm I cách mặt phẳng (P) một khoảng h.

Phương pháp giải

Viết phương trình đường thẳng d về dạng tham số:

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Tâm I thuộc đường thẳng d nên I (x0+at; y0+bt; z0+ct)

Sử dụng công thức

d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

d(I;(P))=h

⇒ Tìm được t ⇒ Tọa độ tâm

Gọi R là bán kính mặt cầu

⇒ R=√(r2 +h2 )

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho đường thẳng

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

và (P): 2x – y – 2z – 2 = 0. Viết phương trình mặt cầu (S) có tâm I thuộc Δ; I cách (P) một khoảng bằng 2 và (P) cắt mặt cầu (S) theo một đường tròn giao tuyến (C) có bán kính bằng 3.

Hướng dẫn:

Phương trình tham số của Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

I thuộc Δ nên I (-t; -1 + 2t; 1+ t)

Khoảng cách từ I đến mặt phẳng (P) là:

h=d(I;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=|-1-2t|

Theo đề bài, I cách (P) một khoảng bằng 2 nên d(I;(P))=2

⇔ |-1-2t|=2

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi R là bán kính của mặt cầu

Ta có: RCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=√13

Vậy có hai phương trình mặt cầu thỏa mãn là:

(x+1/2)2 +y2 +(z-3/2)2=13

(x-3/2)2 +(y+4)2 +(z-1/2)2=13

Bài 2: Trong không gian Oxyz, cho mặt phẳng (P): 2x – 3y – z – 2 = 0. Viết phương trình mặt cầu (S) có tâm E thuộc tia Ox sao cho mặt phẳng (P) cách E một khoảng bằng √14 và cắt mặt cầu (S) theo thiết diện là đường tròn có đường kính bằng 4.

Hướng dẫn:

Tâm E thuộc tia Ox nên E (a; 0; 0)

Khoảng cách từ E đến mặt phẳng (P) là:

d(E;(P))Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Theo giả thiết, khoảng cách từ E đến mặt phẳng (P) bằng √14

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √14 ⇔ |2a-2|=14

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Gọi R là bán kính mặt cầu

Ta có: R

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải= √18

Vậy có 2 phương trình mặt cầu thỏa mãn:

(x-8)2 +y2 +z2=18

(x+6)2 +y2 +z2=18

Viết phương trình mặt cầu có tâm thuộc đường thẳng d và cắt đường thẳng

Dạng bài: Mặt cầu có tâm thuộc d, cắt đường thẳng Δ theo một dây cung có độ dài l và tâm I cách đường thẳng Δ một khoảng là h.

Phương pháp giải

Gọi M (a; b; c) thuộc Δ, u là một vecto chỉ phương

Khi đó, khoảng cách từ I đến đường thẳng Δ được tính theo công thức:

h=d(I;(d))=Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

⇒ Tìm được t ⇒ tọa độ điểm I

Gọi R là bán kính mặt cầu

⇒ R2=(l/2)2 +h2

Ví dụ minh họa

Bài 1: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải, t∈R và Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải ,t' ∈ R. Lập phương trình mặt cầu (S) có tâm I ∈∆1, biết Δ2 cắt mặt cầu theo dây cung có độ dài là 8 và I cách Δ2 một khoảng bằng 3

Hướng dẫn:

Tâm I ∈Δ1 nên I(1;-t; -2+t)

Gọi R là bán kính của mặt cầu

⇒ R2 =(l/2)2 +h2 =(8/2)2 +32=25

Ta có: M (3; -2; 0) ∈Δ2, một Vecto chỉ phương của Δ2 là u=(0;1;1)

IM =(2; -2+t;2-t)

⇒ [IM ; u ]=(t-4;-2;2)

Khi đó, khoảng cách từ I đến Δ2 là:

d(I; Δ2 )Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=3 ⇔ t2 -8t +24 =18

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Với t=4 +√10 thì I(1; -4 -√10;2 +√10)

Với t=4 -√10 thì I(1; -4 +√10;2 -√10)

Vậy phương trình mặt cầu cần tìm là:

(x-1)2 +(y+4 +√10)2 +(z-2-√10)2=25

(x-1)2 +(y+4 -√10)2 +(z-2+√10)2=25

Bài 2: Trong không gian hệ tọa độ Oxyz, cho 2 đường thẳng Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải , t∈R và Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải , t'∈R. Lập phương trình mặt cầu (S) có tâm I ∈Δ1 và I cách Δ2 một khoảng bằng 3, cho biết mặt phẳng (P): 2x + 2y – 7z = 0 cắt mặt cầu (S) theo một đường tròn giao tuyến có bán kính r = 5.

Hướng dẫn:

Tâm I thuộc Δ1 nên I (t; -t; 0)

Điểm M (5; -2; 0) thuộc Δ2 và một vecto chỉ phương là u=(-2;0;1)

IM=(5-t; -2+t;0)

⇒ [IM ; u ]=(t-2;t-5;2t-4)

Khi đó, khoảng cách từ I đến Δ2 là:

d(I; Δ2 )Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giảiCác dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải=3 ⇔ 6t2 -30t+45=45

Các dạng bài tập Toán lớp 12 ôn thi THPT Quốc gia có lời giải

+ Điểm I1(0;0;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.

Phương trình mặt cầu là:

x2 +y2 +z2=25

+ Điểm I2 (5; -5;0) thuộc mặt phẳng (P) nên bán kính của đường tròn giao tuyến là bán kính của mặt cầu.

Phương trình mặt cầu là:

(x-5)2 +(y+5)2 +z2=25

Tài liệu có 66 trang. Để xem toàn bộ tài liệu, vui lòng tải xuống

Đánh giá

0

0 đánh giá

Tải xuống